Self-Supervised 3D Representation Learning of Dressed Humans From Social Media Videos

被引:0
|
作者
Jafarian, Yasamin [1 ]
Park, Hyun Soo [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
Depth estimation; dataset; high fidelity human reconstruction; normal estimation; single view 3D reconstruction; self-supervised learning;
D O I
10.1109/TPAMI.2022.3231558
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A key challenge of learning a visual representation for the 3D high fidelity geometry of dressed humans lies in the limited availability of the ground truth data (e.g., 3D scanned models), which results in the performance degradation of 3D human reconstruction when applying to real-world imagery. We address this challenge by leveraging a new data resource: a number of social media dance videos that span diverse appearance, clothing styles, performances, and identities. Each video depicts dynamic movements of the body and clothes of a single person while lacking the 3D ground truth geometry. To learn a visual representation from these videos, we present a new self-supervised learning method to use the local transformation that warps the predicted local geometry of the person from an image to that of another image at a different time instant. This allows self-supervision by enforcing a temporal coherence over the predictions. In addition, we jointly learn the depths along with the surface normals that are highly responsive to local texture, wrinkle, and shade by maximizing their geometric consistency. Our method is end-to-end trainable, resulting in high fidelity depth estimation that predicts fine geometry faithful to the input real image. We further provide a theoretical bound of self-supervised learning via an uncertainty analysis that characterizes the performance of the self-supervised learning without training. We demonstrate that our method outperforms the state-of-the-art human depth estimation and human shape recovery approaches on both real and rendered images.
引用
收藏
页码:8969 / 8983
页数:15
相关论文
共 50 条
  • [1] Self-supervised Secondary Landmark Detection via 3D Representation Learning
    Bala, Praneet
    Zimmermann, Jan
    Park, Hyun Soo
    Hayden, Benjamin Y.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (08) : 1980 - 1994
  • [2] Self-supervised Secondary Landmark Detection via 3D Representation Learning
    Praneet Bala
    Jan Zimmermann
    Hyun Soo Park
    Benjamin Y. Hayden
    International Journal of Computer Vision, 2023, 131 : 1980 - 1994
  • [3] Self-supervised Adversarial Masking for 3D Point Cloud Representation Learning
    Szachniewicz, Michal
    Kozlowski, Wojciech
    Stypulkowski, Michal
    Zieba, Maciej
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, ACIIDS 2024, 2024, 14796 : 156 - 168
  • [4] Learning Effective Geometry Representation from Videos for Self-Supervised Monocular Depth Estimation
    Zhao, Hailiang
    Kong, Yongyi
    Zhang, Chonghao
    Zhang, Haoji
    Zhao, Jiansen
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (06)
  • [5] Self-Supervised Learning for Videos: A Survey
    Schiappa, Madeline C.
    Rawat, Yogesh S.
    Shah, Mubarak
    ACM COMPUTING SURVEYS, 2023, 55 (13S)
  • [6] Depth Estimation for Colonoscopy Images with Self-supervised Learning from Videos
    Cheng, Kai
    Ma, Yiting
    Sun, Bin
    Li, Yang
    Chen, Xuejin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VI, 2021, 12906 : 119 - 128
  • [7] SSRL: Self-Supervised Spatial-Temporal Representation Learning for 3D Action Recognition
    Jin, Zhihao
    Wang, Yifan
    Wang, Qicong
    Shen, Yehu
    Meng, Hongying
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (01) : 274 - 285
  • [8] Self-Supervised Learning of Detailed 3D Face Reconstruction
    Chen, Yajing
    Wu, Fanzi
    Wang, Zeyu
    Song, Yibing
    Ling, Yonggen
    Bao, Linchao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 8696 - 8705
  • [9] 3D Human Pose Machines with Self-Supervised Learning
    Wang, Keze
    Lin, Liang
    Jiang, Chenhan
    Qian, Chen
    Wei, Pengxu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (05) : 1069 - 1082
  • [10] Self-Supervised Audio-Visual Representation Learning for in-the-wild Videos
    Feng, Zishun
    Tu, Ming
    Xia, Rui
    Wang, Yuxuan
    Krishnamurthy, Ashok
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5671 - 5672