A Multi-Model Ensemble Kalman Filter for Data Assimilation and Forecasting

被引:15
|
作者
Bach, Eviatar [1 ,2 ,3 ,4 ,5 ]
Ghil, Michael [1 ,2 ,3 ,4 ,6 ]
机构
[1] Ecole Normale Super, Geosci Dept, Paris, France
[2] Ecole Normale Super, Lab Meteorol Dynam, CNRS, Paris, France
[3] Ecole Normale Super, IPSL, Paris, France
[4] PSL Univ, Paris, France
[5] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[6] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
基金
欧盟地平线“2020”;
关键词
ensemble Kalman filter; multi-model ensemble; SEQUENTIAL DATA ASSIMILATION; MODEL ERROR; WEATHER; CLIMATE; PREDICTION; SYSTEM; ORDER; COMBINATION; ALGORITHM; INFLATION;
D O I
10.1029/2022MS003123
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Data assimilation (DA) aims to optimally combine model forecasts and observations that are both partial and noisy. Multi-model DA generalizes the variational or Bayesian formulation of the Kalman filter, and we prove that it is also the minimum variance linear unbiased estimator. Here, we formulate and implement a multi-model ensemble Kalman filter (MM-EnKF) based on this framework. The MM-EnKF can combine multiple model ensembles for both DA and forecasting in a flow-dependent manner; it uses adaptive model error estimation to provide matrix-valued weights for the separate models and the observations. We apply this methodology to various situations using the Lorenz96 model for illustration purposes. Our numerical experiments include multiple models with parametric error, different resolved scales, and different fidelities. The MM-EnKF results in significant error reductions compared to the best model, as well as to an unweighted multi-model ensemble, with respect to both probabilistic and deterministic error metrics.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Data Assimilation for Strongly Nonlinear Problems by Transformed Ensemble Kalman Filter
    Liao, Qinzhuo
    Zhang, Dongxiao
    SPE JOURNAL, 2015, 20 (01): : 202 - 221
  • [42] A Nonlinear Rank Regression Method for Ensemble Kalman Filter Data Assimilation
    Anderson, Jeffrey L.
    MONTHLY WEATHER REVIEW, 2019, 147 (08) : 2847 - 2860
  • [43] Empirical Localization Functions for Ensemble Kalman Filter Data Assimilation in Regions with and without Precipitation
    Lei, Lili
    Anderson, Jeffrey L.
    Romine, Glen S.
    MONTHLY WEATHER REVIEW, 2015, 143 (09) : 3664 - 3679
  • [44] An ensemble Kalman filter for atmospheric data assimilation: Application to wind tunnel data
    Zheng, D. Q.
    Leung, J. K. C.
    Lee, B. Y.
    ATMOSPHERIC ENVIRONMENT, 2010, 44 (13) : 1699 - 1705
  • [45] A two-stage ensemble Kalman filter for smooth data assimilation
    Johns, Craig J.
    Mandel, Jan
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2008, 15 (01) : 101 - 110
  • [46] Data Assimilation of Steam Flow Through a Control Valve Using Ensemble Kalman Filter
    Fang, Peixun
    He, Chuangxin
    Wang, Peng
    Xu, Sihua
    Liu, Yingzheng
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (09):
  • [47] A local ensemble transform Kalman particle filter for convective-scale data assimilation
    Robert, Sylvain
    Leuenberger, Daniel
    Kunsch, Hans R.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (713) : 1279 - 1296
  • [48] Data assimilation using the ensemble Kalman filter in a distributed hydrological model on the Tocantins River, Brasil
    Jimenez, Karena Quiroz
    Collischonn, Walter
    Dias de Paiva, Rodrigo Cauduro
    RBRH-REVISTA BRASILEIRA DE RECURSOS HIDRICOS, 2019, 24
  • [49] Do Multi-Model Ensembles Improve Reconstruction Skill in Paleoclimate Data Assimilation?
    Parsons, Luke A.
    Amrhein, Daniel E.
    Sanchez, Sara C.
    Tardif, Robert
    Brennan, M. Kathleen
    Hakim, Gregory J.
    EARTH AND SPACE SCIENCE, 2021, 8 (04)
  • [50] Flow-dependent empirical singular vector with an ensemble Kalman filter data assimilation for El Nino prediction
    Ham, Yoo-Geun
    Rienecker, Michele M.
    CLIMATE DYNAMICS, 2012, 39 (7-8) : 1727 - 1738