A Multi-Model Ensemble Kalman Filter for Data Assimilation and Forecasting

被引:20
作者
Bach, Eviatar [1 ,2 ,3 ,4 ,5 ]
Ghil, Michael [1 ,2 ,3 ,4 ,6 ]
机构
[1] Ecole Normale Super, Geosci Dept, Paris, France
[2] Ecole Normale Super, Lab Meteorol Dynam, CNRS, Paris, France
[3] Ecole Normale Super, IPSL, Paris, France
[4] PSL Univ, Paris, France
[5] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[6] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
基金
欧盟地平线“2020”;
关键词
ensemble Kalman filter; multi-model ensemble; SEQUENTIAL DATA ASSIMILATION; MODEL ERROR; WEATHER; CLIMATE; PREDICTION; SYSTEM; ORDER; COMBINATION; ALGORITHM; INFLATION;
D O I
10.1029/2022MS003123
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Data assimilation (DA) aims to optimally combine model forecasts and observations that are both partial and noisy. Multi-model DA generalizes the variational or Bayesian formulation of the Kalman filter, and we prove that it is also the minimum variance linear unbiased estimator. Here, we formulate and implement a multi-model ensemble Kalman filter (MM-EnKF) based on this framework. The MM-EnKF can combine multiple model ensembles for both DA and forecasting in a flow-dependent manner; it uses adaptive model error estimation to provide matrix-valued weights for the separate models and the observations. We apply this methodology to various situations using the Lorenz96 model for illustration purposes. Our numerical experiments include multiple models with parametric error, different resolved scales, and different fidelities. The MM-EnKF results in significant error reductions compared to the best model, as well as to an unweighted multi-model ensemble, with respect to both probabilistic and deterministic error metrics.
引用
收藏
页数:30
相关论文
共 121 条
[1]   A unifying view of synchronization for data assimilation in complex nonlinear networks [J].
Abarbanel, Henry D. I. ;
Shirman, Sasha ;
Breen, Daniel ;
Kadakia, Nirag ;
Rey, Daniel ;
Armstrong, Eve ;
Margoliash, Daniel .
CHAOS, 2017, 27 (12)
[2]   ESD Reviews: Model dependence in will-model climate ensembles: weighting. slip-sf section and out-of-sample testing [J].
Abramowitz, Gab ;
Herger, Nadja ;
Gutmann, Ethan ;
Hammerling, Dorit ;
Knutti, Reto ;
Leduc, Martin ;
Lorenz, Ruth ;
Pincus, Robert ;
Schmidt, Gavin A. .
EARTH SYSTEM DYNAMICS, 2019, 10 (01) :91-105
[3]   Multiple Model Kalman and Particle Filters and Applications: A Survey [J].
Akca, Alper ;
Efe, M. Onder .
IFAC PAPERSONLINE, 2019, 52 (03) :73-78
[4]   Stabilization of projection-based reduced-order models [J].
Amsallem, David ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (04) :358-377
[5]   LINEAR COMBINATION OF FORECASTS - A GENERAL BAYESIAN MODEL [J].
ANANDALINGAM, G ;
CHEN, L .
JOURNAL OF FORECASTING, 1989, 8 (03) :199-214
[6]   Spatially and temporally varying adaptive covariance inflation for ensemble filters [J].
Anderson, Jeffrey L. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2009, 61 (01) :72-83
[7]  
Antoulas A., 2005, ADV DES CONTROL, DOI [10.1137/1.9780898718713, 10.1137/1. 9780898718713]
[8]  
Asch M., 2016, Data Assimilation: Methods, Algorithms, and Applications, DOI DOI 10.1137/1.9781611974546
[9]  
Bach Eviatar, 2022, Zenodo, DOI 10.5281/ZENODO.7450931
[10]   Ensemble Oscillation Correction (EnOC): Leveraging Oscillatory Modes to Improve Forecasts of Chaotic Systems [J].
Bach, Eviatar ;
Mote, Safa ;
Krishnamurthy, V ;
Sharma, A. Surjalal ;
Ghil, Michael ;
Kalnay, Eugenia .
JOURNAL OF CLIMATE, 2021, 34 (14) :5673-5686