Unitary paradox of cosmological perturbations

被引:1
|
作者
Loc, Ngo Phuc Duc [1 ]
机构
[1] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
来源
关键词
Bekenstein-Hawking entropy; entanglement entropy; inflation;
D O I
10.1142/S0218271823500505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
If we interpret the Bekenstein-Hawking entropy of the Hubble horizon as thermodynamic entropy, then the entanglement entropy of the superhorizon modes of curvature perturbation entangled with the subhorizon modes will exceed the Bekenstein-Hawking bound at some point; we call this the unitary paradox of cosmological perturbations by analogy with black hole. In order to avoid a fine-tuned problem, the paradox must occur during the inflationary era at the critical time tc = ln(3 root pi/root v 2 epsilon H-H(inf))/2Hinf (in Planck units), where epsilon H = - H/H-2 is the first Hubble slow-roll parameter and Hinf is the Hubble rate during inflation. If we instead accept the fine-tuned problem, then the paradox will occur during the dark energy era at the critical time t'(c) = In(3 root pi H-inf/root 2fe(2N) H-Delta(2)) where H Delta is the Hubble rate dominated by dark energy, N is the total number of e-folds of inflation and f is a purification factor that takes the range 0 < f < 3 root pi H-inf/v 2(e2N)H(Delta)(2).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Conservation laws for cosmological perturbations
    Nathalie Deruelle
    Jean-Philippe Uzan
    International Journal of Theoretical Physics, 1997, 36 : 2461 - 2468
  • [32] Isocurvature cosmological perturbations and the CMB
    Langlois, D
    COMPTES RENDUS PHYSIQUE, 2003, 4 (08) : 953 - 959
  • [33] Cosmological perturbations in the inflationary Universe
    Zimdahl, W
    PHYSICAL REVIEW D, 1997, 56 (06) : 3357 - 3364
  • [34] Perturbations in bouncing cosmological models
    Neto, NP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (07): : 1419 - 1424
  • [35] Frame independent cosmological perturbations
    Prokopec, Tomislav
    Weenink, Jan
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (09):
  • [36] Backreaction problem for cosmological perturbations
    Mukhanov, VF
    Abramo, LRW
    Brandenberger, RH
    PHYSICAL REVIEW LETTERS, 1997, 78 (09) : 1624 - 1627
  • [37] Cosmological perturbations in conformal gravity
    Mannheim, Philip D.
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [38] Cosmological perturbations without inflation
    Melia, Fulvio
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (01)
  • [39] Holographic view of cosmological perturbations
    Soda, J
    Kanno, S
    ASTROPHYSICS AND SPACE SCIENCE, 2003, 283 (04) : 639 - 644
  • [40] Brane world cosmological perturbations
    Casali, AG
    Abdalla, E
    Wang, B
    PHYSICAL REVIEW D, 2004, 70 (04):