Unitary paradox of cosmological perturbations

被引:1
|
作者
Loc, Ngo Phuc Duc [1 ]
机构
[1] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
来源
关键词
Bekenstein-Hawking entropy; entanglement entropy; inflation;
D O I
10.1142/S0218271823500505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
If we interpret the Bekenstein-Hawking entropy of the Hubble horizon as thermodynamic entropy, then the entanglement entropy of the superhorizon modes of curvature perturbation entangled with the subhorizon modes will exceed the Bekenstein-Hawking bound at some point; we call this the unitary paradox of cosmological perturbations by analogy with black hole. In order to avoid a fine-tuned problem, the paradox must occur during the inflationary era at the critical time tc = ln(3 root pi/root v 2 epsilon H-H(inf))/2Hinf (in Planck units), where epsilon H = - H/H-2 is the first Hubble slow-roll parameter and Hinf is the Hubble rate during inflation. If we instead accept the fine-tuned problem, then the paradox will occur during the dark energy era at the critical time t'(c) = In(3 root pi H-inf/root 2fe(2N) H-Delta(2)) where H Delta is the Hubble rate dominated by dark energy, N is the total number of e-folds of inflation and f is a purification factor that takes the range 0 < f < 3 root pi H-inf/v 2(e2N)H(Delta)(2).
引用
收藏
页数:11
相关论文
共 50 条
  • [21] COSMOLOGICAL PERTURBATIONS AND THE RUNNING COSMOLOGICAL CONSTANT MODEL
    Velasquez-Toribio, Alan M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2012, 21 (03):
  • [22] COMMUTATORS, PERTURBATIONS, AND UNITARY SPECTRA
    PUTNAM, CR
    ACTA MATHEMATICA, 1961, 106 (3-4) : 215 - 232
  • [23] POSITIVE PERTURBATIONS AND UNITARY EQUIVALENCE
    PUTNAM, CR
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (01): : 161 - 164
  • [24] Cosmological perturbations: Myths and facts
    Steinhardt, PJ
    MODERN PHYSICS LETTERS A, 2004, 19 (13-16) : 967 - 982
  • [25] Cosmological perturbations on a bouncing brane
    Brandenberger, Robert
    Firouzjahi, Hassan
    Saremi, Omid
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (11):
  • [26] Loops in reheating and cosmological perturbations
    Kaya, Ali
    PHYSICAL REVIEW D, 2014, 90 (04):
  • [27] COSMOLOGICAL PERTURBATIONS OF A RELATIVISTIC CONDENSATE
    PARKER, L
    ZHANG, Y
    PHYSICAL REVIEW D, 1995, 51 (06): : 2703 - 2712
  • [28] Cosmological backreaction from perturbations
    Behrend, Juliane
    Brown, Iain A.
    Robbers, Georg
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (01):
  • [29] COSMOLOGICAL PERTURBATIONS IN THE EARLY UNIVERSE
    BRANDENBERGER, R
    KAHN, R
    PRESS, WH
    PHYSICAL REVIEW D, 1983, 28 (08): : 1809 - 1821
  • [30] Relativistic hydrodynamic cosmological perturbations
    Hwang, J
    Noh, H
    GENERAL RELATIVITY AND GRAVITATION, 1999, 31 (08) : 1131 - 1157