The Crystal Structure of Manganotychite, Na6Mn2(CO3)4(SO4), and Structural Relations in the Northupite Group

被引:3
|
作者
Krivovichev, Sergey V. [1 ,2 ]
Panikorovskii, Taras L. [1 ,2 ]
Bazai, Ayya V. [1 ]
Sidorov, Mikhail Yu. [3 ]
机构
[1] Russian Acad Sci, Nanomat Res Ctr, Kola Sci Ctr, Fersmana 14, Apatity 184209, Russia
[2] St Petersburg State Univ, Dept Crystallog, Inst Earth Sci, Univ Emb 7-9, St Petersburg 199034, Russia
[3] Russian Acad Sci, Geol Inst, Kola Sci Ctr, Fersmana 14, Apatity 184209, Russia
基金
俄罗斯科学基金会;
关键词
manganotychite; northupite group; crystal structure; tychite; ferrotychite; antiperovskite; antipyrochlore; diamond net; structural complexity; MINERALS; TYCHITE; KIMBERLITES; COMPLEXITY; LAKE;
D O I
10.3390/cryst13050800
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The crystal structure of manganotychite has been refined using the holotype specimen from the Alluaiv Mountain, Lovozero massif, Kola peninsula, Russia. The mineral is cubic, Fd (3) over bar, a = 14.0015(3) angstrom, V = 2744.88(18) angstrom 3, Z = 8, R-1 = 0.020 for 388 independently observed reflections. Manganotychite is isotypic to tychite and ferrotychite. Its crystal structure is based upon a three-dimensional infinite framework formed by condensation of MnO6 octahedra and CO3 groups by sharing common O atoms. The sulfate groups and Na+ cations reside in the cavities of the octahedral-triangular metal-carbonate framework. In terms of symmetry and basic construction of the octahedral-triangular framework, the crystal structure of manganotychite is identical to that of northupite, Na3Mg(CO3)(2)Cl. The transition northupite ! tychite can be described as a result of the multiatomic 2Cl(-) -> (SO4)(2-) substitution, where both chlorine and sulfate ions are the extra-framework constituents. However, the positions occupied by sulfate groups and chlorine ions correspond to different octahedral cavities within the skeletons of Na atoms. The crystal structure of northupite can be considered as an interpenetration of two frameworks: anionic [Mg(CO3)(2)](2-) octahedral-triangular framework and cationic [ClNa3](2-) framework with the antipyrochlore topology. Both manganotychite and northupite structure types can be described as a modification of the crystal structure of diamond (or the dia net) via the following steps: (i) replacement of a vertex of the dia net by an M-4 tetrahedron (no symmetry reduction); (ii) attachment of (CO3) triangles to the triangular faces of the M-4 tetrahedra (accompanied by the Fd (3) over barm -> Fd (3) over bar symmetry reduction); (iii) filling voids of the resulting framework by Na+ cations (no symmetry reduction); and (iv) filling voids of the Na skeleton by either sulfate groups (in tychite-type structures) or chlorine atoms (in northupite). As a result, the information-based structural complexity of manganotychite and northupite exceeds that of the dia net.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Mallestigite, Pb3Sb(SO4)(AsO4)(OH)6•3H2O, from the type locality - new data, crystal structure, and structural relationships
    Mereiter, Kurt
    Walter, Franz
    Bojar, Hans-Peter
    MINERALOGY AND PETROLOGY, 2023, 117 (4) : 761 - 774
  • [32] Manganoblodite, Na2Mn(SO4)2•4H2O, and cobaltoblodite, Na2Co(SO4)2•4H2O: two new members of the blodite group from the Blue Lizard mine, San Juan County, Utah, USA
    Kasatkin, A. V.
    Nestola, F.
    Plasil, J.
    Marty, J.
    Belakovskiy, D. I.
    Agakhanov, A. A.
    Mills, S. J.
    Pedron, D.
    Lanza, A.
    Favaro, M.
    Bianchin, S.
    Lykova, I. S.
    Golias, V.
    Birch, W. D.
    MINERALOGICAL MAGAZINE, 2013, 77 (03) : 367 - 383
  • [33] Structural investigations, high temperature behavior and phase transition of Na6Ca4(SO4)6F2
    Botta, C.
    Kahlenberg, V.
    Hejny, C.
    Toebbens, D. M.
    Bykov, M.
    van Smaalen, S.
    MINERALOGY AND PETROLOGY, 2014, 108 (04) : 487 - 501
  • [34] Synthesis and structural characterisation of new ettringite and thaumasite type phases: Ca6[Ga(OH)6•12H2O]2(SO4)3•2H2O and Ca6[M(OH)6•12H2O]2(SO4)2(CO3)2, M = Mn, Sn
    Norman, Rachel L.
    Dann, Sandra E.
    Hogg, Simon C.
    Kirk, Caroline A.
    SOLID STATE SCIENCES, 2013, 25 : 110 - 117
  • [35] Crystal structure of K4Pu(SO4)4•2H2O
    Mudher, KDS
    Krishnan, K
    JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 313 (1-2) : 65 - 68
  • [36] Synthesis and crystal structure of [Co(phen)(H2O)4](SO4)•2(H2O)
    Zhu, HL
    Pan, YJ
    Wang, XJ
    Yu, KB
    JOURNAL OF CHEMICAL CRYSTALLOGRAPHY, 2004, 34 (03) : 199 - 202
  • [37] Synthesis and crystal structure of [Co(phen)(H2O)4](SO4)⋅2(H2O)
    Hai-Liang Zhu
    Yong-Jun Pan
    Xian-Jiang Wang
    Kai-Bei Yu
    Journal of Chemical Crystallography, 2004, 34 : 199 - 202
  • [38] THE CRYSTAL-STRUCTURE OF FEDOTOVITE, K2CU3O(SO4)3
    STAROVA, GL
    FILATOV, SK
    FUNDAMENSKY, VS
    VERGASOVA, LP
    MINERALOGICAL MAGAZINE, 1991, 55 (381) : 613 - 616
  • [39] Synthesis and Crystal structure of Poly{[Co(4,4'-bpy)(H2O)4]SO4·(4-abaH)2·3H2O}
    CHEN Hong-Ji② (Jinan University
    Chinese Journal of Structural Chemistry, 2005, (02) : 236 - 240
  • [40] Synchrotron Diffraction Study of the Crystal Structure of Ca(UO2)6(SO4)2O2(OH)6•12H2O, a Natural Phase Related to Uranopilite
    Krivovichev, Sergey, V
    Meisser, Nicolas
    Brugger, Joel
    Chernyshov, Dmitry, V
    Gurzhiy, Vladislav V.
    MINERALS, 2018, 8 (12):