Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: efficient algorithms and numerical results

被引:7
作者
Gilbert, Alexander D. [1 ]
Scheichl, Robert [2 ,3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Heidelberg Univ, Inst Appl Math & Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
关键词
stochastic eigenvalue problems; quasi-Monte Carlo; uncertainty quantification; multilevel Monte Carlo; BY-COMPONENT CONSTRUCTION; RANK-1 LATTICE RULES; DISCRETIZATION; EQUATIONS;
D O I
10.1093/imanum/drad009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic partial differential equation (PDE) eigenvalue problems (EVPs) often arise in the field of uncertainty quantification, whereby one seeks to quantify the uncertainty in an eigenvalue, or its eigenfunction. In this paper, we present an efficient multilevel quasi-Monte Carlo (MLQMC) algorithm for computing the expectation of the smallest eigenvalue of an elliptic EVP with stochastic coefficients. Each sample evaluation requires the solution of a PDE EVP, and so tackling this problem in practice is notoriously computationally difficult. We speed up the approximation of this expectation in four ways: we use a multilevel variance reduction scheme to spread the work over a hierarchy of FE meshes and truncation dimensions; we use QMC methods to efficiently compute the expectations on each level; we exploit the smoothness in parameter space and reuse the eigenvector from a nearby QMC point to reduce the number of iterations of the eigensolver; and we utilize a two-grid discretization scheme to obtain the eigenvalue on the fine mesh with a single linear solve. The full error analysis of a basic MLQMC algorithm is given in the companion paper (Gilbert, A. D. & Scheichl, R. (2023) Multilevel quasi-Monte Carlo methods for random elliptic eigenvalue problems I: regularity and analysis. IMA J. Numer. Anal.), and so, in this paper, we focus on how to further improve the efficiency and provide theoretical justification for using nearby QMC points and two-grid methods. Numerical results are presented that show the efficiency of our algorithm, and also show that the four strategies we employ are complementary.
引用
收藏
页码:504 / 535
页数:32
相关论文
共 46 条
  • [31] Efficient randomized quasi-Monte Carlo methods for portfolio market risk
    Sak, Halis
    Basoglu, Ismail
    INSURANCE MATHEMATICS & ECONOMICS, 2017, 76 : 87 - 94
  • [32] p-Refined Multilevel Quasi-Monte Carlo for Galerkin Finite Element Methods with Applications in Civil Engineering
    Blondeel, Philippe
    Robbe, Pieterjan
    Van Hoorickx, Cedric
    Francois, Stijn
    Lombaert, Geert
    Vandewalle, Stefan
    ALGORITHMS, 2020, 13 (05)
  • [33] FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION USING MULTILEVEL MONTE CARLO ALGORITHMS FOR AN ELLIPTIC NONLOCAL EQUATION
    Jasra, Ajay
    Law, Kody J. H.
    Zhou, Yan
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2016, 6 (06) : 501 - 514
  • [34] Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients
    Ali, Ahmad Ahmad
    Ullmann, Elisabeth
    Hinze, Michael
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 466 - 492
  • [35] A Numerical Comparison Between Quasi-Monte Carlo and Sparse Grid Stochastic Collocation Methods
    Azevedo, Juarez dos Santos
    Oliveira, Saulo Pomponet
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 12 (04) : 1051 - 1069
  • [36] Decision-theoretic sensitivity analysis for reservoir development under uncertainty using multilevel quasi-Monte Carlo methods
    Goda, Takashi
    Murakami, Daisuke
    Tanaka, Kei
    Sato, Kozo
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (04) : 1009 - 1020
  • [37] Decision-theoretic sensitivity analysis for reservoir development under uncertainty using multilevel quasi-Monte Carlo methods
    Takashi Goda
    Daisuke Murakami
    Kei Tanaka
    Kozo Sato
    Computational Geosciences, 2018, 22 : 1009 - 1020
  • [38] QUASI-MONTE CARLO NUMERICAL INTEGRATION ON Rs: DIGITAL NETS AND WORST-CASE ERROR
    Dick, Josef
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1661 - 1691
  • [39] EFFICIENT COMPUTATION OF OPTION PRICES AND GREEKS BY QUASI-MONTE CARLO METHOD WITH SMOOTHING AND DIMENSION REDUCTION
    Weng, Chengfeng
    Wang, Xiaoqun
    He, Zhijian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02) : B298 - B322
  • [40] Uniform Experimental Design-Based Nonparametric Quasi-Monte Carlo for Efficient Probabilistic Power Flow
    Krishna, Attoti Bharath
    Abhyankar, Abhijit R.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (03) : 2318 - 2332