The effect of thinning intensity on the soil carbon pool mediated by soil microbial communities and necromass carbon in coastal zone protected forests

被引:13
作者
Zhang, Zixu [1 ]
Hao, Ming [1 ]
Yu, Qinghui [1 ]
Dun, Xingjian [3 ]
Xu, Jingwei [3 ]
Gao, Peng [1 ,2 ]
机构
[1] Shandong Agr Univ, Forestry Coll, Mt Tai Forest Ecosyst Res Stn State Forestry, Grassland Adm, Tai An 271018, Shandong, Peoples R China
[2] Shandong Agr Univ, Key Lab Crop Water Physiol, Drought Tolerance Germplasm Improvement Minist Agr, Tai An 271018, Shandong, Peoples R China
[3] Shandong Acad Forestry, Jinan 250014, Shandong, Peoples R China
关键词
Microbial necromass carbon; SOC fractions; Microbial community; Thinning; Quercus; Pinus; ORGANIC-MATTER; MURAMIC ACID; SEQUESTRATION; UNCERTAINTY; PHOSPHORUS; MANAGEMENT; BACTERIAL; BIOMASS; FUNGAL; TRENDS;
D O I
10.1016/j.scitotenv.2023.163492
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thinning is a common forest management measure that can effectively maintain the ecological service function of protected forests. However, the effect of thinning on the soil carbon (C) pool remains uncertain. In particular, we lack an understanding of the complete link between thinning and microbial communities, microbial necromass C, and consequently, soil C pools in coastal zone protected forests. In this study, three thinning intensities, i.e., a control treatment (CT, i.e., no thinning), light thinning (LT) and heavy thinning (HT), were established in three types of forests (Quercus acutissima Carruth, Pinus thunbergii Parl and mixed Quercus acutissima Carruth and Pinus thunbergii Parl, i.e., QAC, PTP and QP, respectively). Two years after the completion of thinning, we investigated the changes in the soil organic carbon (SOC) fractions, soil microbial community and soil microbial necromass C in the surface layer (0-20 cm) and thoroughly evaluated the relationship between the potential change in SOC and the microbial commu-nity. Compared with CT, there was no change in the SOC content under LT and HT, but thinning conducted in QAC increased the proportion of mineral-associated organic C (MAOC) in SOC. Moreover, both LT and HT reduced the soil carbon lability (CL) in the QAC and QP forests. Different thinning intensities changed the soil microbial community structure, and most of the variation was explained by thinning and the soil physicochemical properties. The proportion of soil bacterial and fungal necromass C to SOC increased with increasing thinning intensity. The content of soil bac-terial and fungal necromass C was mainly controlled by the relative abundance of the core phylum (relative abun-dance>10 %). Thinning affected the soil C pool by affecting the content of soil bacterial and fungal necromass C, but their accumulation pathways was different. The results showed that thinning was beneficial to the stability of SOC. The microbial C pool, total organic C pool and even bacterial and fungal C pools should be distinguished when study-ing the soil C pool, which can effectively deepen our understanding of the mechanism by which soil microorganisms affect the soil C pool.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Calcium forms influence soil organic carbon by mediating labile organic carbon fractions, carbon pool management indices and microbial communities in calcareous alkaline soils
    Dou, Xiaolu
    Zhang, Congzhi
    Chen, Lin
    Wu, Qicong
    Zhou, Guixiang
    Ma, Donghao
    Zhao, Zhanhui
    Zhang, Jiabao
    PLANT AND SOIL, 2024,
  • [42] Difference in soil microbial necromass carbon accumulation induced by three crops straw mulching for 4 years in a citrus orchard
    Liang, Xiaomin
    Chen, Yilin
    Wang, Xiaojuan
    Tan, Qiling
    Wu, Songwei
    Hu, Chengxiao
    BIOLOGY AND FERTILITY OF SOILS, 2024, 60 (08) : 1099 - 1110
  • [43] The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments
    Liu, Zhiwei
    Zhu, Mengtao
    Wang, Jiameng
    Liu, Xiuxia
    Guo, Wenjie
    Zheng, Jufeng
    Bian, Rongjun
    Wang, Genmei
    Zhang, Xuhui
    Cheng, Kun
    Liu, Xiaoyu
    Li, Lianqing
    Pan, Genxing
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2019, 11 (12): : 1408 - 1420
  • [44] Reduced contribution of microbial necromass carbon to soil organic carbon following tunnel construction in the eastern Qinghai-Tibet Plateau
    Chen, Yuzhuo
    Xiang, Jincheng
    Wang, Xiaodong
    Xiao, Yang
    Laffitte, Benjamin
    He, Shurui
    Yu, Du
    Chen, Guo
    Li, Lin
    Pei, Xiangjun
    Tang, Xiaolu
    JOURNAL OF CLEANER PRODUCTION, 2024, 434
  • [45] Global synthesis on the response of soil microbial necromass carbon to climate-smart agriculture
    Li, Yuze
    Wang, Shengnan
    Yang, Yali
    Ren, Liang
    Wang, Ziting
    Liao, Yuncheng
    Yong, Taiwen
    GLOBAL CHANGE BIOLOGY, 2024, 30 (05)
  • [46] Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates
    Ni, Haowei
    Jing, Xiaoyan
    Xiao, Xian
    Zhang, Na
    Wang, Xiaoyue
    Sui, Yueyu
    Sun, Bo
    Liang, Yuting
    ISME JOURNAL, 2021, 15 (09) : 2561 - 2573
  • [47] Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation
    Kou, Xinchang
    Morrien, Elly
    Tian, Yijia
    Zhang, Xiaoke
    Lu, Caiyan
    Xie, Hongtu
    Liang, Wenju
    Li, Qi
    Liang, Chao
    GLOBAL CHANGE BIOLOGY, 2023, 29 (14) : 4069 - 4080
  • [48] Accumulation of soil microbial necromass carbon and its contribution to soil organic carbon after vegetation restoration in the Tibetan Plateau
    Pei, Xiangjun
    Lei, Junjie
    Wang, Xiaodong
    Xiao, Yang
    Yang, Zhihan
    Zhao, Runying
    Zeng, Cangli
    Luo, Zhenyu
    Li, Jingji
    Lei, Ningfei
    Yang, Qingwen
    Peng, Shuming
    Cheng, Xuejun
    Li, Pingfeng
    Tang, Xiaolu
    GLOBAL ECOLOGY AND CONSERVATION, 2024, 56
  • [49] Decades of reforestation significantly change microbial necromass, glomalin, and their contributions to soil organic carbon
    Zhang, Mengling
    Che, Rongxiao
    Cheng, Zhibao
    Zhao, Hongkai
    Wu, Chengwei
    Hu, Jinming
    Zhang, Song
    Liu, Dong
    Cui, Xiaoyong
    Wu, Yibo
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2023, 346
  • [50] Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon
    Wang, Chao
    Wang, Xu
    Zhang, Yang
    Morrissey, Ember
    Liu, Yue
    Sun, Lifei
    Qu, Lingrui
    Sang, Changpeng
    Zhang, Hong
    Li, Guochen
    Zhang, Lili
    Fang, Yunting
    ISME COMMUNICATIONS, 2023, 3 (01):