The effect of thinning intensity on the soil carbon pool mediated by soil microbial communities and necromass carbon in coastal zone protected forests

被引:13
|
作者
Zhang, Zixu [1 ]
Hao, Ming [1 ]
Yu, Qinghui [1 ]
Dun, Xingjian [3 ]
Xu, Jingwei [3 ]
Gao, Peng [1 ,2 ]
机构
[1] Shandong Agr Univ, Forestry Coll, Mt Tai Forest Ecosyst Res Stn State Forestry, Grassland Adm, Tai An 271018, Shandong, Peoples R China
[2] Shandong Agr Univ, Key Lab Crop Water Physiol, Drought Tolerance Germplasm Improvement Minist Agr, Tai An 271018, Shandong, Peoples R China
[3] Shandong Acad Forestry, Jinan 250014, Shandong, Peoples R China
关键词
Microbial necromass carbon; SOC fractions; Microbial community; Thinning; Quercus; Pinus; ORGANIC-MATTER; MURAMIC ACID; SEQUESTRATION; UNCERTAINTY; PHOSPHORUS; MANAGEMENT; BACTERIAL; BIOMASS; FUNGAL; TRENDS;
D O I
10.1016/j.scitotenv.2023.163492
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thinning is a common forest management measure that can effectively maintain the ecological service function of protected forests. However, the effect of thinning on the soil carbon (C) pool remains uncertain. In particular, we lack an understanding of the complete link between thinning and microbial communities, microbial necromass C, and consequently, soil C pools in coastal zone protected forests. In this study, three thinning intensities, i.e., a control treatment (CT, i.e., no thinning), light thinning (LT) and heavy thinning (HT), were established in three types of forests (Quercus acutissima Carruth, Pinus thunbergii Parl and mixed Quercus acutissima Carruth and Pinus thunbergii Parl, i.e., QAC, PTP and QP, respectively). Two years after the completion of thinning, we investigated the changes in the soil organic carbon (SOC) fractions, soil microbial community and soil microbial necromass C in the surface layer (0-20 cm) and thoroughly evaluated the relationship between the potential change in SOC and the microbial commu-nity. Compared with CT, there was no change in the SOC content under LT and HT, but thinning conducted in QAC increased the proportion of mineral-associated organic C (MAOC) in SOC. Moreover, both LT and HT reduced the soil carbon lability (CL) in the QAC and QP forests. Different thinning intensities changed the soil microbial community structure, and most of the variation was explained by thinning and the soil physicochemical properties. The proportion of soil bacterial and fungal necromass C to SOC increased with increasing thinning intensity. The content of soil bac-terial and fungal necromass C was mainly controlled by the relative abundance of the core phylum (relative abun-dance>10 %). Thinning affected the soil C pool by affecting the content of soil bacterial and fungal necromass C, but their accumulation pathways was different. The results showed that thinning was beneficial to the stability of SOC. The microbial C pool, total organic C pool and even bacterial and fungal C pools should be distinguished when study-ing the soil C pool, which can effectively deepen our understanding of the mechanism by which soil microorganisms affect the soil C pool.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] An overlooked soil carbon pool in vegetated coastal ecosystems: National-scale assessment of soil organic carbon stocks in coastal shelter forests of China
    Li, Yuan
    Fu, Chuancheng
    Wang, Weiqi
    Zeng, Lin
    Tu, Chen
    Luo, Yongming
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 876
  • [22] The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration
    Wang, Baorong
    Liang, Chao
    Yao, Hongjia
    Yang, Env
    An, Shaoshan
    CATENA, 2021, 207
  • [24] Riparian reforestation: are there changes in soil carbon and soil microbial communities?
    Mackay, J. E.
    Cunningham, S. C.
    Cavagnaro, T. R.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 566 : 960 - 967
  • [25] Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation
    Kou, Xinchang
    Morrien, Elly
    Tian, Yijia
    Zhang, Xiaoke
    Lu, Caiyan
    Xie, Hongtu
    Liang, Wenju
    Li, Qi
    Liang, Chao
    GLOBAL CHANGE BIOLOGY, 2023, 29 (14) : 4069 - 4080
  • [26] Accumulation of soil microbial necromass carbon and its contribution to soil organic carbon after vegetation restoration in the Tibetan Plateau
    Pei, Xiangjun
    Lei, Junjie
    Wang, Xiaodong
    Xiao, Yang
    Yang, Zhihan
    Zhao, Runying
    Zeng, Cangli
    Luo, Zhenyu
    Li, Jingji
    Lei, Ningfei
    Yang, Qingwen
    Peng, Shuming
    Cheng, Xuejun
    Li, Pingfeng
    Tang, Xiaolu
    GLOBAL ECOLOGY AND CONSERVATION, 2024, 56
  • [27] Effect of termite mounds on soil microbial communities and microbial processes: Implications for soil carbon and nitrogen cycling
    Chen, Chunfeng
    Singh, Ashutosh Kumar
    Yang, Bin
    Wang, Haofei
    Liu, Wenjie
    GEODERMA, 2023, 431
  • [28] Appropriate Amount Application of Manure is Conducive to Improve Soil Aggregate Stability in Saline-Alkaline Soil: Analyzed from Soil Organic Carbon Mediated by Microbial Necromass Carbon
    Gao, Chunwei
    Zhang, Shirong
    Chen, Mengmeng
    Cheng, Lingbao
    Zhang, Xiaoguang
    Ding, Xiaodong
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024, : 7256 - 7270
  • [29] Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon
    Wang, Chao
    Qu, Lingrui
    Yang, Liuming
    Liu, Dongwei
    Morrissey, Ember
    Miao, Renhui
    Liu, Ziping
    Wang, Qingkui
    Fang, Yunting
    Bai, Edith
    GLOBAL CHANGE BIOLOGY, 2021, 27 (10) : 2039 - 2048
  • [30] Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization
    Buckeridge, Kate M.
    Mason, Kelly E.
    McNamara, Niall P.
    Ostle, Nick
    Puissant, Jeremy
    Goodall, Tim
    Griffiths, Robert, I
    Stott, Andrew W.
    Whitaker, Jeanette
    COMMUNICATIONS EARTH & ENVIRONMENT, 2020, 1 (01):