Effect of the carbon on the electrochemical performance of rechargeable Zn-air batteries

被引:12
|
作者
Peng, Chunyu [1 ]
Chen, Jiankang [2 ,3 ]
Jin, Mengmeng [2 ,3 ]
Bi, Xiaoying [2 ,3 ]
Yi, Chang [2 ,3 ]
Zhang, Shiming [2 ,3 ]
Xu, Xinye [1 ]
Liu, Weilan [2 ,3 ]
Liu, Xiang [1 ]
Lai, Linfei [2 ,3 ]
机构
[1] Nanjing Tech Univ, Sch Energy Sci & Engn, 30 South Puzhu Rd, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Key Lab Flexible Elect, Sch Flexible Elect Future Technol, 5 XinMofan Rd, Nanjing 210009, Peoples R China
[3] Nanjing Tech Univ, Inst Adv Mat IAM, Sch Flexible Elect Future Technol, 5 XinMofan Rd, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
Zn-air batteries; Carbon corrosion; Air; -cathodes; Oxygen evolution reaction; Cycle life; ALKALINE ELECTROLYTE; BLACK ANODES; ACETYLENE BLACK; QUANTUM DOTS; NANOTUBES; CATALYSTS; CORROSION; COMPOSITES;
D O I
10.1016/j.ijhydene.2022.10.240
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon materials as catalyst substrates play key roles in Zn-air batteries which not only construct abundant tri-phase interfaces for the oxygen reduction reaction (ORR) and ox-ygen evolution reaction (OER) to take place but also enable the diffusion of reactants. Carbon corrosion is known to occur in the aqueous electrolyte which leads to catalysts dissolution, electrode flooding, and rapid performance degradation. In this study, rechargeable Zn-air batteries with MnO2 as the bifunctional catalysts and different carbon as catalyst carriers, such as carbon black, CNTs, and graphene have been assembled with their electrochemical performance systematically evaluated. The correlation between the graphitization, surface, structure properties of the carbon, and the electrochemical per-formance of air-electrodes has been elucidated. The electrolyte composition change during cycling and the underlying corrosion mechanism of carbon have been explored. CNTs with high crystallinity and less edge exposure is an excellent candidate over activated carbon and graphene as a catalyst carrier for metal-air batteries.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5313 / 5322
页数:10
相关论文
共 50 条
  • [1] Revealing the Effects of Structure Design and Operating Protocols on the Electrochemical Performance of Rechargeable Zn-Air Batteries
    Zhao, Zhongxi
    Yu, Wentao
    He, Yi
    Shang, Wenxu
    Ma, Yanyi
    Zhao, Hong
    Tan, Peng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (10)
  • [2] Bifunctional electrocatalysts for rechargeable Zn-air batteries
    Guo, Yibo
    Chen, Ya-Nan
    Cui, Huijuan
    Zhou, Zhen
    CHINESE JOURNAL OF CATALYSIS, 2019, 40 (09) : 1298 - 1310
  • [3] Air Electrodes for Flexible and Rechargeable Zn-Air Batteries
    Wang, Xiao Xia
    Yang, Xiaoxuan
    Liu, Hui
    Han, Tao
    Hu, Junhua
    Li, Hongbo
    Wu, Gang
    SMALL STRUCTURES, 2022, 3 (01):
  • [4] Recent Advances in Rechargeable Zn-Air Batteries
    Zhao, Hui
    MOLECULES, 2024, 29 (22):
  • [5] Bifunctional air electrodes for flexible rechargeable Zn-air batteries
    Lang, Xiaoling
    Hu, Zhibiao
    Wang, Caiyun
    CHINESE CHEMICAL LETTERS, 2021, 32 (03) : 999 - 1009
  • [6] Bifunctional air electrodes for flexible rechargeable Zn-air batteries
    Xiaoling Lang
    Zhibiao Hu
    Caiyun Wang
    Chinese Chemical Letters, 2021, 32 (03) : 999 - 1009
  • [7] Surface/interface nanoengineering for rechargeable Zn-air batteries
    Zhou, Tianpei
    Zhang, Nan
    Wu, Changzheng
    Xie, Yi
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (04) : 1132 - 1153
  • [8] Preconstructing Asymmetric Interface in Air Cathodes for High-Performance Rechargeable Zn-Air Batteries
    Liu, Jia-Ning
    Zhao, Chang-Xin
    Ren, Ding
    Wang, Juan
    Zhang, Rui
    Wang, Shu-Hao
    Zhao, Chuan
    Li, Bo-Quan
    Zhang, Qiang
    ADVANCED MATERIALS, 2022, 34 (11)
  • [9] Development and Optimization of Air-Electrodes for Rechargeable Zn-Air Batteries
    Nisa, Khair Un
    da Silva Freitas, Williane
    Montero, Jorge
    D'Epifanio, Alessandra
    Mecheri, Barbara
    CATALYSTS, 2023, 13 (10)
  • [10] An Iron-Decorated Carbon Aerogel for Rechargeable Flow and Flexible Zn-Air Batteries
    Wu, Kunze
    Zhang, Lei
    Yuan, Yifei
    Zhong, Linxin
    Chen, Zhongxin
    Chi, Xiao
    Lu, Hao
    Chen, Zehong
    Zou, Ren
    Li, Tingzhen
    Jiang, Chengyu
    Chen, Yongkang
    Peng, Xinwen
    Lu, Jun
    ADVANCED MATERIALS, 2020, 32 (32)