Self-exciting hysteretic binomial autoregressive processes

被引:9
作者
Yang, Kai [1 ]
Zhao, Xiuyue [1 ]
Dong, Xiaogang [1 ]
Weiss, Christian H. [2 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, Changchun, Peoples R China
[2] Helmut Schmidt Univ, Dept Math & Stat, Hamburg, Germany
基金
中国国家自然科学基金;
关键词
Integer-valued time series; Hysteretic autoregressive model; Binomial autoregression; Parameter estimation; RANGE TIME-SERIES; THRESHOLD AUTOREGRESSION; COUNTS; MODELS;
D O I
10.1007/s00362-023-01444-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces an observation-driven integer-valued time series model, in which the underlying generating stochastic process is binomially distributed conditional on past information in the form of a hysteretic autoregressive structure. The basic probabilistic and statistical properties of the model are discussed. Conditional least squares, weighted conditional least squares, and maximum likelihood estimators are obtained together with their asymptotic properties. A search algorithm for the two boundary parameters, and the corresponding strong consistency of the estimators, are also provided. Finally, some numerical results on the estimators and a real-data example are presented.
引用
收藏
页码:1197 / 1231
页数:35
相关论文
共 50 条
[41]   Statistical inference of pth-order generalized binomial autoregressive model [J].
Zhang, Jie ;
Shao, Siyu ;
Wang, Dehui ;
Sheng, Danshu .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (04) :1003-1026
[42]   Extended binomial AR(1) processes with generalized binomial thinning operator [J].
Kang, Yao ;
Wang, Dehui ;
Yang, Kai .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (14) :3498-3520
[43]   Monitoring correlated processes with binomial marginals [J].
Weiss, Christian H. .
JOURNAL OF APPLIED STATISTICS, 2009, 36 (04) :399-414
[44]   Representation of Cointegrated Autoregressive Processes with Application to Fractional Processes [J].
Johansen, Soren .
ECONOMETRIC REVIEWS, 2009, 28 (1-3) :121-145
[45]   Generalized binary vector autoregressive processes [J].
Jentsch, Carsten ;
Reichmann, Lena .
JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (02) :285-311
[46]   Symmetrical and asymmetrical mixture autoregressive processes [J].
Malekia, Mohsen ;
Hajrajabi, Arezo ;
Arellano-Valle, Reinaldo B. .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2020, 34 (02) :273-290
[47]   Misspecification of noncausal order in autoregressive processes [J].
Gourieroux, Christian ;
Jasiak, Joann .
JOURNAL OF ECONOMETRICS, 2018, 205 (01) :226-248
[48]   AUTOREGRESSIVE SEQUENCES VIA LEVY PROCESSES [J].
Bouzar, Nadjib .
REVSTAT-STATISTICAL JOURNAL, 2010, 8 (02) :81-+
[49]   Outliers and persistence in threshold autoregressive processes [J].
Ahmad, Yamin ;
Donayre, Luiggi .
STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2016, 20 (01) :37-56
[50]   An integer-valued threshold autoregressive process based on negative binomial thinning [J].
Yang, Kai ;
Wang, Dehui ;
Jia, Boting ;
Li, Han .
STATISTICAL PAPERS, 2018, 59 (03) :1131-1160