Abrupt symmetry-preserving transition from the chimera state

被引:0
|
作者
Manoranjani, M. [1 ]
Senthilkumar, D., V [2 ]
Chandrasekar, V. K. [1 ]
机构
[1] SASTRA Deemed Univ, Ctr Nonlinear Sci & Engn, Sch Elect & Elect Engn, Dept Phys, Thanjavur 613401, India
[2] Indian Inst Sci Educ & Res, Sch Phys, Thiruvananthapuram 695016, India
关键词
OSCILLATORS; POPULATIONS;
D O I
10.1103/PhysRevE.107.034212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider two populations of the globally coupled Sakaguchi-Kuramoto model with the same intra-and interpopulations coupling strengths. The oscillators constituting the intrapopulation are identical whereas the interpopulations are nonidentical with a frequency mismatch. The asymmetry parameters ensure the permutation symmetry among the oscillators constituting the intrapopulation and a reflection symmetry among the oscillators constituting the interpopulation. We show that the chimera state manifests by spontaneously breaking the reflection symmetry and also exists in almost in the entire explored range of the asymmetry parameter without restricting to the near pi /2 values of it. The saddle-node bifurcation mediates the abrupt transition from the symmetry breaking chimera state to the symmetry-preserving synchronized oscillatory state in the reverse trace, whereas the homoclinic bifurcation mediates the transition from the synchronized oscillatory state to synchro-nized steady state in the forward trace. We deduce the governing equations of motion for the macroscopic order parameters employing the finite-dimensional reduction by Watanabe and Strogatz. The analytical saddle-node and homoclinic bifurcation conditions agree well with the simulations results and the bifurcation curves.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Chiral symmetry-preserving coupling method for topological acoustic metamaterials
    Chen, Ssu-Ying
    Prodan, Camelia
    PHYSICAL REVIEW MATERIALS, 2024, 8 (01)
  • [42] Symmetry-preserving regularization of wall-bounded turbulent flows
    Trias, F. X.
    Gorobets, A.
    Verstappen, R. W. C. P.
    Oliva, A.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): STATISTICAL ASPECTS, MODELLING AND SIMULATIONS OF TURBULENCE, 2011, 318
  • [43] Symmetry-Preserving Regularization Modelling of a Turbulent Plane Impinging Jet
    Lehmkuhl, O.
    Trias, F. X.
    Borrel, R.
    Perez Segarra, C. D.
    DIRECT AND LARGE-EDDY SIMULATION VII, 2010, 13 : 295 - 301
  • [44] Non-Linear Symmetry-Preserving Observers on Lie Groups
    Bonnabel, Silvere
    Martin, Philippe
    Rouchon, Pierre
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (07) : 1709 - 1713
  • [45] An improved WENO-Z scheme with symmetry-preserving mapping
    Zheng Hong
    Zhengyin Ye
    Kun Ye
    Advances in Aerodynamics, 2
  • [46] Symmetry-preserving difference schemes for some heat transfer equations
    Bakirova, MI
    Dorodnitsyn, VA
    Kozlov, RV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23): : 8139 - 8155
  • [47] Symmetry-Preserving Data Fusion for Optical-Inertial Tracking
    Claasen, Goentje
    Graichen, Knut
    Martin, Philippe
    AT-AUTOMATISIERUNGSTECHNIK, 2013, 61 (08) : 596 - 608
  • [48] Symmetry-Preserving Discretization of Heat Transfer in a Complex Turbulent Flow
    R. W. C. P. Verstappen
    R. M. Van Der Velde
    Journal of Engineering Mathematics, 2006, 54 : 299 - 318
  • [49] The symmetry-preserving mean field condition for electrostatic correlations in bulk
    Hu, Zhonghan
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (03):
  • [50] Symmetry-preserving reversible integer-to-integer wavelet transforms
    Adams, MD
    Ward, R
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 2509 - 2512