Abrupt symmetry-preserving transition from the chimera state

被引:0
|
作者
Manoranjani, M. [1 ]
Senthilkumar, D., V [2 ]
Chandrasekar, V. K. [1 ]
机构
[1] SASTRA Deemed Univ, Ctr Nonlinear Sci & Engn, Sch Elect & Elect Engn, Dept Phys, Thanjavur 613401, India
[2] Indian Inst Sci Educ & Res, Sch Phys, Thiruvananthapuram 695016, India
关键词
OSCILLATORS; POPULATIONS;
D O I
10.1103/PhysRevE.107.034212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider two populations of the globally coupled Sakaguchi-Kuramoto model with the same intra-and interpopulations coupling strengths. The oscillators constituting the intrapopulation are identical whereas the interpopulations are nonidentical with a frequency mismatch. The asymmetry parameters ensure the permutation symmetry among the oscillators constituting the intrapopulation and a reflection symmetry among the oscillators constituting the interpopulation. We show that the chimera state manifests by spontaneously breaking the reflection symmetry and also exists in almost in the entire explored range of the asymmetry parameter without restricting to the near pi /2 values of it. The saddle-node bifurcation mediates the abrupt transition from the symmetry breaking chimera state to the symmetry-preserving synchronized oscillatory state in the reverse trace, whereas the homoclinic bifurcation mediates the transition from the synchronized oscillatory state to synchro-nized steady state in the forward trace. We deduce the governing equations of motion for the macroscopic order parameters employing the finite-dimensional reduction by Watanabe and Strogatz. The analytical saddle-node and homoclinic bifurcation conditions agree well with the simulations results and the bifurcation curves.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Symmetry-preserving matchings
    Vera, R
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (20) : 5249 - 5264
  • [2] Symmetry-Preserving Observers
    Bonnabel, Silvere
    Martin, Philippe
    Rouchon, Pierre
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (11) : 2514 - 2526
  • [3] Symmetry-preserving discretization for DNS
    Verstappen, R. W. C. P.
    Droge, M. T.
    Veldman, A. E. P.
    Direct and Large-Eddy Simulation V, Proceedings, 2004, 9 : 135 - 146
  • [4] Symmetry-preserving boundary of (2
    Kobayashi, Ryohei
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [5] Symmetry-Preserving Numerical Schemes
    Bihlo, Alexander
    Valiquette, Francis
    SYMMETRIES AND INTEGRABILITY OF DIFFERENCE EQUATIONS, 2017, : 261 - 324
  • [6] A SYMMETRY-PRESERVING CUTOFF REGULARIZATION
    OLESZCZUK, M
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 64 (03): : 533 - 538
  • [7] An unusual case of symmetry-preserving isomerism
    Sun, Daofeng
    Ma, Shengqian
    Simmons, Jason M.
    Li, Jian-Rong
    Yuan, Daqiang
    Zhou, Hong-Cai
    CHEMICAL COMMUNICATIONS, 2010, 46 (08) : 1329 - 1331
  • [8] Symmetry-preserving discretization of turbulent flow
    Verstappen, RWCP
    Veldman, AEP
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 343 - 368
  • [9] Symmetry-preserving modeling for lithographic imaging
    Guo, Shaopeng
    Cheng, Lei
    Jiang, Hao
    Ke, Xianhua
    Zhang, Song
    Wei, David H.
    Sun, Yanlong
    Liu, Shiyuan
    OPTICS LETTERS, 2024, 49 (14) : 4038 - 4041
  • [10] Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm
    Bryan T. Gard
    Linghua Zhu
    George S. Barron
    Nicholas J. Mayhall
    Sophia E. Economou
    Edwin Barnes
    npj Quantum Information, 6