Automatic generation of pathological benchmark dataset from hyperspectral images of double stained tissues

被引:17
作者
Wang, Jiansheng [1 ,2 ]
Mao, Xintian [1 ,3 ]
Wang, Yan [1 ,2 ]
Tao, Xiang [4 ]
Chu, Junhao [1 ,2 ]
Li, Qingli [1 ,2 ,3 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Engn Res Ctr Nanophoton & Adv Instrument, Minist Educ, Shanghai 200241, Peoples R China
[3] Engn Ctr SHMEC Space Informat & GNSS, Shanghai 200241, Peoples R China
[4] Fudan Univ, Obstet & Gynecol Hosp, Shanghai 200011, Peoples R China
关键词
Pathology dataset; Automatic annotation; Microscopic hyperspectral imaging; Deep learning; Double stain; ANTICYTOKERATIN CAM5.2; CNN;
D O I
10.1016/j.optlastec.2023.109331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Artificial intelligence has been widely used for digital pathology diagnosis. However, the AI performance highly relies on the high-quality annotated datasets, pathological images need to be labeled by experienced pathologists manually, which is time consuming, laborious and expensive. In addition, small lesion areas are usually missed by human eyes, directly influencing the performance of those identification models trained by the data. This paper presents a new strategy for generating annotated pathological benchmark dataset from microscopic hyperspectral images of HE-CAM5.2 stained tissues. We design a Spatial-Spectral based Hyperspectral GAN (SSHGAN), which transforms hyperspectral images into standard histological images using networks trained by the cycle consistent adversarial model. Gradient boosting decision tree integrated with graph-cut method is used to automatically generate the annotations by adding the spectral prior. The proposed strategy can obtain both the standard H&E images and the corresponding annotation files simultaneously using spatial and spectral information of hyperspectral images. The methods have been tested on gastric cancer, lung adenocarcinoma, intrahepatic cholangiocarcinoma, and colorectal cancer tissues and evaluated by segmentation networks and experienced pathologists. Experimental results show that the proposed methods have desirable performance on small tumor targets and discrete regions, which is promising in automatically generating completely annotation pathology benchmark datasets.
引用
收藏
页数:12
相关论文
共 53 条
  • [1] BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis
    Aksac, Alper
    Demetrick, Douglas J.
    Ozyer, Tansel
    Alhajj, Reda
    [J]. BMC RESEARCH NOTES, 2019, 12 (1)
  • [2] Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology
    Bera, Kaustav
    Schalper, Kurt A.
    Rimm, David L.
    Velcheti, Vamsidhar
    Madabhushi, Anant
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) : 703 - 715
  • [3] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [4] Anticytokeratin (CAM5.2) Reagent Identifies Cytokeratins 7 and 8, Not Cytokeratin 18
    Chang, Kuang-Leei
    Chao, Wan-Ru
    Han, Chih-Ping
    [J]. CHEST, 2014, 145 (06) : 1441 - 1442
  • [5] Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    Chin, L.
    Meyerson, M.
    Aldape, K.
    Bigner, D.
    Mikkelsen, T.
    VandenBerg, S.
    Kahn, A.
    Penny, R.
    Ferguson, M. L.
    Gerhard, D. S.
    Getz, G.
    Brennan, C.
    Taylor, B. S.
    Winckler, W.
    Park, P.
    Ladanyi, M.
    Hoadley, K. A.
    Verhaak, R. G. W.
    Hayes, D. N.
    Spellman, Paul T.
    Absher, D.
    Weir, B. A.
    Ding, L.
    Wheeler, D.
    Lawrence, M. S.
    Cibulskis, K.
    Mardis, E.
    Zhang, Jinghui
    Wilson, R. K.
    Donehower, L.
    Wheeler, D. A.
    Purdom, E.
    Wallis, J.
    Laird, P. W.
    Herman, J. G.
    Schuebel, K. E.
    Weisenberger, D. J.
    Baylin, S. B.
    Schultz, N.
    Yao, Jun
    Wiedemeyer, R.
    Weinstein, J.
    Sander, C.
    Gibbs, R. A.
    Gray, J.
    Kucherlapati, R.
    Lander, E. S.
    Myers, R. M.
    Perou, C. M.
    McLendon, Roger
    [J]. NATURE, 2008, 455 (7216) : 1061 - 1068
  • [6] Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
    Coudray, Nicolas
    Ocampo, Paolo Santiago
    Sakellaropoulos, Theodore
    Narula, Navneet
    Snuderl, Matija
    Fenyo, David
    Moreira, Andre L.
    Razavian, Narges
    Tsirigos, Aristotelis
    [J]. NATURE MEDICINE, 2018, 24 (10) : 1559 - +
  • [7] Convolutional neural network: a review of models, methodologies and applications to object detection
    Dhillon, Anamika
    Verma, Gyanendra K.
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (02) : 85 - 112
  • [8] Greedy function approximation: A gradient boosting machine
    Friedman, JH
    [J]. ANNALS OF STATISTICS, 2001, 29 (05) : 1189 - 1232
  • [9] Digital Imaging in Pathology: Whole-Slide Imaging and Beyond
    Ghaznavi, Farzad
    Evans, Andrew
    Madabhushi, Anant
    Feldman, Michael
    [J]. ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 8, 2013, 8 : 331 - 359
  • [10] Goodfellow IJ, 2014, ADV NEURAL INFORM PR, V27, P2672, DOI DOI 10.1145/3422622