Direct methods on η-Hermitian solutions of the split quaternion matrix equation (AXB,CXD)=(E,F)

被引:3
|
作者
Li, Ming-Zhao [1 ]
Yuan, Shi-Fang [1 ]
Jiang, Hua [1 ]
机构
[1] Wuyi Univ, Sch Math & Computat Sci, Jiangmen 529020, Peoples R China
关键词
Kronecker product; matrix equation; split quaternion matrix;
D O I
10.1002/mma.7273
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides two direct methods for solving the split quaternion matrix equation (AXB,CXD)=(E,F), where X is an unknown split quaternion eta-Hermitian matrix, and A, B, C, D, E, F are known split quaternion matrices with suitable size. Our tools are the Kronecker product, Moore-Penrose generalized inverse, real representation, and complex representation of split quaternion matrices. Our main work is to find the necessary and sufficient conditions for the existence of a solution of the matrix equation mentioned above, derive the explicit solution representation, and provide four numerical algorithms and two numerical examples.
引用
收藏
页码:15952 / 15971
页数:20
相关论文
共 50 条
  • [21] The reflexive solutions of the matrix equation AXB = C
    Cvetkovic-Iliic, D. S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (6-7) : 897 - 902
  • [22] Ranks of solutions of the matrix equation AXB = C
    Tian, YG
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (02) : 111 - 125
  • [23] RANKS AND INDEPENDENCE OF SOLUTIONS OF THE MATRIX EQUATION AXB
    Tian, Yongge
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2006, 75 (01): : 75 - 84
  • [24] Solving the Dual Generalized Commutative Quaternion Matrix Equation AXB = C
    Shi, Lei
    Wang, Qing-Wen
    Xie, Lv-Ming
    Zhang, Xiao-Feng
    SYMMETRY-BASEL, 2024, 16 (10):
  • [25] Least squares X=±Xη* solutions to split quaternion matrix equation AXAη*=B
    Liu, Xin
    Zhang, Yang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2189 - 2201
  • [26] The least squares η-Hermitian problems of quaternion matrix equation AHXA + BHYB = C
    Yuan, Shi-Fang
    Wang, Qing-Wen
    Xiong, Zhi-Ping
    FILOMAT, 2014, 28 (06) : 1153 - 1165
  • [27] The Quaternion Matrix Equation ∑A~iXBi=E
    Huang Liping Department of Basic Sciences
    Acta Mathematica Sinica,English Series, 1998, (01) : 91 - 98
  • [28] The quaternion matrix equation ΣAiXBi=E
    Huang Liping
    Acta Mathematica Sinica, 1998, 14 (1) : 91 - 98
  • [29] The generalized quaternion matrix equation AXB plus CX&x22c6;D=E
    Yu, Cui'e
    Liu, Xin
    Zhang, Yang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) : 8506 - 8517
  • [30] On solutions of matrix equation AXB+CX=D
    Chen, Xiaojuan
    Guo, WenBin
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 168 - 171