Enhanced Sensing and Electromagnetic Interference Shielding Performance of Hydrogels by the Incorporation of Ionic Liquids

被引:21
作者
Hu, Xuxu [1 ]
Cheng, Yu [2 ]
Wei, Zijian [1 ]
Zhang, Ran [1 ]
Zhan, Yanhu [1 ]
Xia, Hesheng [2 ]
机构
[1] Liaocheng Univ, Sch Mat Sci & Engn, Liaocheng 252000, Peoples R China
[2] Sichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
electromagnetic shielding; strain sensor; hydrogel; ionic liquids; nanocomposites; COMPOSITE HYDROGELS; GRAPHENE OXIDE; POLYANILINE; GRAPHENE/POLYANILINE; ROBUST; CAPACITANCE; ABSORPTION;
D O I
10.1021/acsaelm.3c01681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conductive polymer hydrogel-based sensors with high-performance electromagnetic interference shielding effectiveness (EMI SE) have attracted much attention. In this field, the tremendous challenge is achieving an even dispersion of the conductive fillers in order to enhance their sensitivity and SE. Herein, ionic liquids (ILs), the ionic conductors, are chosen to optimize the morphology of polyaniline (PANI) on graphene oxide (GO) and improve the dispersion of PANI@GO (PGO) in sodium alginate/polyacrylamide (SA/PAM) hydrogels. Because of the presence of an electron-ion conductive network, the resulting SA/PAM/IL@PGO hydrogels exhibit a conductivity of 0.13 S/m, which is 21.7 times higher than that of SA/PAM/PGO hydrogels. This outstanding electron-ion conductivity endows the SA/PAM/IL@PGO hydrogels with an EMI SE of 53.6 dB and a low reflection coefficient, indicating excellent green shielding ability. More importantly, the gauge factor of resulting SA/PAM/IL@PGO hydrogels reaches 3.03, suggesting high sensitivity, so they can be used as strain sensors to monitor vigorous bodily movements. This work provides a strategy for fabricating hydrogels as high-sensitivity sensors with a high-performance shielding capability.
引用
收藏
页码:1770 / 1780
页数:11
相关论文
共 58 条
[21]   Stimuli-Responsive Toughening of Hydrogels [J].
Lin, Xinxing ;
Wang, Xiaolin ;
Zeng, Liangpeng ;
Wu, Zi Liang ;
Guo, Hui ;
Hourdet, Dominique .
CHEMISTRY OF MATERIALS, 2021, 33 (19) :7633-7656
[22]   InSitu Integrated Fabrication for Multi-Interface Stabilized and Highly Durable Polyaniline@Graphene Oxide/Polyether Ether Ketone Special Separation Membranes [J].
Lin, Ziyu ;
Zhong, Jundong ;
Sun, Runyin ;
Wei, Yingzhen ;
Sun, Zhonghui ;
Li, Wenying ;
Chen, Liyuan ;
Sun, Yirong ;
Zhang, Haibo ;
Pang, Jinhui ;
Jiang, Zhenhua .
ADVANCED SCIENCE, 2023, 10 (25)
[23]   Asymmetric segregated network design of ultralight and thermal insulating polymer composite foams for green electromagnetic interference shielding [J].
Liu, Fang ;
Wei, Zijian ;
Hu, Xuxu ;
Cai, Yifan ;
Chen, Zhenming ;
Yang, Chao ;
Zhan, Yanhu ;
Xia, Hesheng .
COMPOSITES COMMUNICATIONS, 2023, 38
[24]   Super-strong and tough poly(vinyl alcohol)/poly(acrylic acid) hydrogels reinforced by hydrogen bonding [J].
Liu, Tianqi ;
Jiao, Chen ;
Peng, Xin ;
Chen, Ya-Nan ;
Chen, Yuanyuan ;
He, Changcheng ;
Liu, Ruigang ;
Wang, Huiliang .
JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (48) :8105-8114
[25]   A stretchable, environmentally stable, and mechanically robust nanocomposite polyurethane organohydrogel with anti-freezing, anti-dehydration, and electromagnetic shielding properties for strain sensors and magnetic actuators [J].
Liu, Yang ;
Zhang, Zetian ;
Yang, Xiaohan ;
Li, Fufen ;
Liang, Ze ;
Yong, Yong ;
Dai, Songbo ;
Li, Zhengjun .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (12) :6603-6614
[26]   Influence of Counterions on Micellization of Tetramethylammonium Perfluorononanoic Carboxylate in 1-Butyl-3-methylimidazolium Ionic Liquid [J].
Long, Panfeng ;
Chen, Jingfei ;
Wang, Dong ;
Hu, Ziqi ;
Gao, Xuedong ;
Li, Ziran ;
Hao, Jingcheng .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (26) :7669-7675
[27]   Flexible Polypyrrole Nanotube-Polyethylene Glycol-Polyvinyl Alcohol Hydrogels for Enhanced Electromagnetic Shielding [J].
Lu, Shengqi ;
Ouyang, Bo ;
Han, Songmao ;
Qiao, Fengyu ;
Chen, Kai ;
Wu, Fan ;
Xie, Aming ;
Kan, Erjun ;
Zeng, Haibo .
ACS APPLIED NANO MATERIALS, 2022, 5 (08) :11407-11413
[28]   Polyaniline-Graphene Oxide Nanocomposites: Influence of Nonconducting Graphene Oxide on the Conductivity and Oxidation-Reduction Mechanism of Polyaniline [J].
Mooss, Vandana A. ;
Athawale, Anjali A. .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2016, 54 (23) :3778-3786
[29]  
Park JS, 2023, J MATER CHEM A, V11, P18188, DOI 10.1039/d3ta02862c
[30]   Clarification of basic concepts for electromagnetic interference shielding effectiveness [J].
Peng, Mengyue ;
Qin, Faxiang .
JOURNAL OF APPLIED PHYSICS, 2021, 130 (22)