Neural-Network-Based NLOS Identification of Angular Clusters at 60 GHz

被引:0
作者
Lyu, Pengfei [1 ,2 ,3 ,4 ]
Benlarbi-Delai, Aziz [3 ,4 ]
Ren, Zhuoxiang [3 ,4 ]
Sarrazin, Julien [3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Sch Microelect, Beijing 100049, Peoples R China
[3] Sorbonne Univ, Lab Genie Elect & Elect Paris, CNRS, F-75252 Paris, France
[4] Univ Paris Saclay, Lab Genie Elect & Elect Paris, CNRS, Cent Supelec, F-91192 Gif Sur Yvette, France
关键词
Training; Location awareness; Delays; Receivers; Antennas; Transmitters; Channel estimation; 60; GHz; artificial neural network (ANN); beam training; indoor localization; millimeter wave; non-line-of-sight (NLOS) identification; TDOA ESTIMATION; WAVE; LOCALIZATION; MIMO; MITIGATION; CHANNEL; COMMUNICATION; SYSTEMS; TRACKING; BLOCKAGE;
D O I
10.1109/TAP.2023.3345423
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The work in this article identifies the nature of individual angular clusters as line-of-sight (LOS) or non-line-of-sight (NLOS) in indoor millimeter-wave (mm-wave) channels. The proposed technique utilizes the channel knowledge that is readily available from a beam training process in directional antenna-based communications. In particular, the behavior of five different channel metrics, namely the angular covariance, the time-domain, frequency-domain channel kurtosis, the mean excess delay, and the rms delay spread, is analyzed using maximum likelihood ratio (MLR) and artificial neural network (ANN). A noticeable difference between LOS and NLOS clusters is observed and assessed for identification. Hypothesis testing shows errors as low as 0.02-0.003 in simulations and 0.04-0.07 in measurements at 60 GHz in indoor short-range environments.
引用
收藏
页码:1745 / 1758
页数:14
相关论文
共 72 条
  • [1] Millimeter Wave Channel Modeling and Cellular Capacity Evaluation
    Akdeniz, Mustafa Riza
    Liu, Yuanpeng
    Samimi, Mathew K.
    Sun, Shu
    Rangan, Sundeep
    Rappaport, Theodore S.
    Erkip, Elza
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) : 1164 - 1179
  • [2] [Anonymous], 2012, IEEE Standard 802.11-2012
  • [3] [Anonymous], 2023, 3Gpp Release 17 Description, document Rec. TR 21.917
  • [4] [Anonymous], 2019, 3GPP Release 15 Description, documentRec.TR21.915
  • [5] The Internet of Things: A survey
    Atzori, Luigi
    Iera, Antonio
    Morabito, Giacomo
    [J]. COMPUTER NETWORKS, 2010, 54 (15) : 2787 - 2805
  • [6] Analysis of Blockage Effects on Urban Cellular Networks
    Bai, Tianyang
    Vaze, Rahul
    Heath, Robert W., Jr.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (09) : 5070 - 5083
  • [7] Borras J, 1998, IEEE VTC P, P1583, DOI 10.1109/VETEC.1998.686556
  • [8] Beamspace MIMO for Millimeter-Wave Communications: System Architecture, Modeling, Analysis, and Measurements
    Brady, John
    Behdad, Nader
    Sayeed, Akbar M.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (07) : 3814 - 3827
  • [9] Collaborative Sensor Network Localization: Algorithms and Practical Issues
    Buehrer, R. Michael
    Wymeersch, Henk
    Vaghefi, Reza Monir
    [J]. PROCEEDINGS OF THE IEEE, 2018, 106 (06) : 1089 - 1114
  • [10] Calibration of Ray-Tracing With Diffuse Scattering Against 28-GHz Directional Urban Channel Measurements
    Charbonnier, Romain
    Lai, Chiehping
    Tenoux, Thierry
    Caudill, Derek
    Gougeon, Gregory
    Senic, Jelena
    Gentile, Camillo
    Corre, Yoann
    Chuang, Jack
    Golmie, Nada
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 14264 - 14276