Development of icy regolith simulant for lunar permanently shadowed regions

被引:5
作者
Slumbaa, Karlis [1 ,2 ,3 ]
Sargeant, Hannah M. [1 ,4 ]
Britt, Daniel T. [1 ,2 ]
机构
[1] Univ Cent Florida, Dept Phys, 4111 Libra Dr PSB430, Orlando, FL 32816 USA
[2] Exolith Lab, 532 South Econ Cir, Oviedo, FL 32765 USA
[3] Univ Adelaide, Andy Thomas Ctr Space Resources, Lunar Construction Grp, Adelaide, SA 5005, Australia
[4] Univ Leicester, Space Pk Leicester, 92Corporat Rd, Leicester LE4 5SP, England
关键词
Lunar regolith; Lunar volatiles; Permanently shadowed region; Lunar polar region; Regolith simulant; In-situ resource utilization; WATER; VOLATILES; POLES;
D O I
10.1016/j.asr.2024.01.014
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The lunar poles are thought to contain vast ice deposits that could be beneficial to future space exploration efforts. However, it is not well characterized how water ice content affects regolith and dust physical properties. In order to develop suitable technologies that can operate safely in the cryogenic regolith, testing should be conducted in simulated regolith. We present a new production method for lunar permanently shadowed regions (PSRs) icy regolith simulant. We build on an existing lunar highlands simulant, by adapting it for lunar poles, where water ice might be present in PSRs. We have demonstrated a production concept using controllable simulant and water flow rates to make granular icy simulant with variable water ice content. We found that with this production method, icy simulant has a porosity of 0.6 to 0.7, that persists even after dehydration. (c) 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:3222 / 3234
页数:13
相关论文
共 31 条
[1]  
[Anonymous], 2021, NASASTD1008
[2]  
Atkinson J, 2018, EARTH AND SPACE 2018: ENGINEERING FOR EXTREME ENVIRONMENTS, P109
[3]   First experimental studies of large samples of gas-laden amorphous "cometary" ices [J].
Bar-Nun, A ;
Laufer, D .
ICARUS, 2003, 161 (01) :157-163
[4]   Resource potential of lunar permanently shadowed regions [J].
Brown, H. M. ;
Boyd, A. K. ;
Denevi, B. W. ;
Henriksen, M. R. ;
Manheim, M. R. ;
Robinson, M. S. ;
Speyerer, E. J. ;
Wagner, R., V .
ICARUS, 2022, 377
[5]   A geologic model for lunar ice deposits at mining scales [J].
Cannon, Kevin M. ;
Britt, Daniel T. .
ICARUS, 2020, 347
[6]  
Carrier W. D., 1991, Lunar sourcebook, P475
[7]   Detection of Water in the LCROSS Ejecta Plume [J].
Colaprete, Anthony ;
Schultz, Peter ;
Heldmann, Jennifer ;
Wooden, Diane ;
Shirley, Mark ;
Ennico, Kimberly ;
Hermalyn, Brendan ;
Marshall, William ;
Ricco, Antonio ;
Elphic, Richard C. ;
Goldstein, David ;
Summy, Dustin ;
Bart, Gwendolyn D. ;
Asphaug, Erik ;
Korycansky, Don ;
Landis, David ;
Sollitt, Luke .
SCIENCE, 2010, 330 (6003) :463-468
[8]   LUNAR OUTGASSING, TRANSIENT PHENOMENA, AND THE RETURN TO THE MOON. II. PREDICTIONS AND TESTS FOR OUTGASSING/REGOLITH INTERACTIONS [J].
Crotts, Arlin P. S. ;
Hummels, Cameron .
ASTROPHYSICAL JOURNAL, 2009, 707 (02) :1506-1523
[9]  
Dreyer Christopher B., 2021, ASCEND 2021, DOI 10.2514/6.2021-4235
[10]  
Gertsch L, 2006, AIP CONF PROC, V813, P1093, DOI 10.1063/1.2169290