Creep in a nanocrystalline VNbMoTaW refractory high-entropy alloy

被引:10
|
作者
Shen, Xun [1 ]
Sun, Baoru [1 ]
Xin, Shengwei [1 ]
Ding, Shuaijun [1 ]
Shen, Tongde [1 ]
机构
[1] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanocrystalline; VNbMoTaW; Refractory high-entropy alloy; Creep behaviors; Grain boundary diffusion; MECHANICAL-PROPERTIES; BEHAVIOR; RESISTANCE; SEGREGATION;
D O I
10.1016/j.jmst.2023.11.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Refractory high-entropy alloys (RHEAs) are considered to be a promising candidate for elevated temperature applications. Nanocrystalline (NC) RHEAs are supposed to exhibit many different high-temperature mechanical behaviors in comparison with their coarse-grained (CG) and ultrafine-grained (UFG) counterparts. However, the creep behaviors of NC RHEAs, which must be well evaluated for high-temperature applications, are largely unknown because it is difficult to produce bulk quantities of NC RHEAs for creep tests. In the present work, an equiatomic bulk NC VNbMoTaW RHEA with an average grain size of 67 +/- 17 nm was synthesized by mechanical alloying (MA) and the subsequent high-pressure/hightemperature sintering. The creep tests were performed on bulk specimens by compression at high temperatures (973 and 1073 K) under different stresses (70-1100 MPa). The creep resistance of the bulk NC VNbMoTaW is slightly lower than that of the bulk CG VNbMoTaW, but much higher than that of previously reported CG and UFG HEAs. The derived activation volume, stress exponent, and activation energy of bulk NC VNbMoTaW indicate that the creep deformation is dominated by grain boundary diffusion. The creep deformation is controlled by the diffusion of Mo and Nb elements, which have the two slowest grain boundary diffusivities among the five alloying elements. The present work provides a fundamental understanding of the creep behavior and deformation mechanism of NC RHEAs, which should help design advanced creep-resistant RHEAs. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 50 条
  • [41] Study on irradiation effects of refractory bcc high-entropy alloy
    Zong, Yun
    Hashimoto, Naoyuki
    Oka, Hiroshi
    NUCLEAR MATERIALS AND ENERGY, 2022, 31
  • [42] Phase stability as a function of temperature in a refractory high-entropy alloy
    Vishal Soni
    Bharat Gwalani
    Oleg N. Senkov
    Babu Viswanathan
    Talukder Alam
    Daniel B. Miracle
    Rajarshi Banerjee
    Journal of Materials Research, 2018, 33 : 3235 - 3246
  • [43] Supporting data for senary refractory high-entropy alloy CrxMoNbTaVW
    Zhang, B.
    Gao, M. C.
    Zhang, Y.
    Guo, S. M.
    DATA IN BRIEF, 2015, 5 : 730 - 735
  • [44] Kinking induced plasticity in a novel refractory high-entropy alloy
    Cui, Dingcong
    Bai, Xiaoyu
    Liu, Xin
    Qiu, Yunji
    Wang, Zhijun
    Li, Junjie
    Wang, Jincheng
    He, Feng
    VACUUM, 2024, 227
  • [45] MICROSTRUCTURE AND MECHANICAL PROPERTIES OF REFRACTORY HIGH-ENTROPY ALLOY HfMoNbTiCr
    Yi, Jiaojiao
    Wang, Lu
    Xu, Mingqin
    Yang, Lin
    MATERIALI IN TEHNOLOGIJE, 2021, 55 (02): : 305 - 310
  • [46] Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloy
    Zhang, Yanwen
    Tunes, Matheus A.
    Crespillo, Miguel L.
    Zhang, Fuxiang
    Boldman, Walker L.
    Rack, Philip D.
    Jiang, Li
    Xu, Chen
    Greaves, Graeme
    Donnelly, Stephen E.
    Wang, Lumin
    Weber, William J.
    NANOTECHNOLOGY, 2019, 30 (29)
  • [47] Irradiation Hardening and Creep Modeling of High-Entropy Alloy at High Temperature and Dose
    Liu, Yulian
    Chen, Yang
    Li, Jia
    Liu, Bin
    Zhang, Ruiqian
    Xia, Jiangtao
    Fang, Qihong
    ACTA MECHANICA SOLIDA SINICA, 2025,
  • [48] Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy
    Jiao, Z. M.
    Wang, Z. H.
    Wu, R. F.
    Qiao, J. W.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (09):
  • [49] Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy
    Z. M. Jiao
    Z. H. Wang
    R. F. Wu
    J. W. Qiao
    Applied Physics A, 2016, 122
  • [50] Long-Term Creep Behavior of a CoCrFeNiMn High-Entropy Alloy
    Rozman, K. A.
    Detrois, M.
    Liu, T.
    Gao, M. C.
    Jablonski, P. D.
    Hawk, J. A.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (09) : 5822 - 5839