Ultra-high output triboelectric nanogenerator based on synergies of material modification and charge pumping

被引:16
|
作者
Li, Zekun [1 ,2 ]
Liu, Jitao [1 ,2 ]
Chi, Mengshuang [1 ,2 ]
Miao, Xue [1 ]
Yang, Hanxiao [1 ]
Cui, Weiqi [1 ]
Yu, Aifang [1 ,2 ]
Zhai, Junyi [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Synergistic effect; P(VDF-HFP); Charge density;
D O I
10.1016/j.cej.2024.148726
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On the road to large-scale industrialization of triboelectric nanogenerators (TENGs), higher output is the constant quest. Here, inspired by the ubiquitous synergies in nature, an ultra-high-output TENG is proposed based on the synergistic effect of internal modification of materials along with the external integration of a charge pumping module. The carefully chosen poly (vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) film possesses strong polarization and high permittivity, which leads to excellent triboelectric properties, and can be further enhanced by doping BaTiO3 (BTO) nanoparticles. Meanwhile, the elaborately designed and optimized charge pumping module endows it with the ability to pump affluent charges. As a consequence, a TENG based on 8 mu m P (VDF-HFP)/BTO 1 wt% composite film can achieve an ultra-high total transfer charge density (TTCD) of 3.5 mC/ m2 under optimal charge pumping conditions. Compared to the output of the P(VDF-HFP)/BTO-based TENG (0.1 mC/m2) and the output of the P(VDF-HFP)-based TENG under charge pumping (2.6 mC/m2), the output of the P (VDF-HFP)/BTO-based TENG under charge pumping is greater than the sum of the above two devices, which indicates that the proposed synergistic effect for designing an ultra-high-output TENG is remarkable and successful. Moreover, a novel charge transfer pattern based on synergistic effect is proposed, expounding the role inherent modifications of P(VDF-HFP) and external integration of charge pumping modules play. This work presents a concept that is at the forefront of contemporary designs for ultra-high output TENGs, providing insight into the preparation of high-performance TENGs in a state-of-the-art manner.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] ZIF-67 Assists ultra-high piezoelectric output based on PVDF flexible nanogenerator
    Li, Zongjie
    Wang, Xiaoyu
    Jia, Mengge
    Lu, Yihan
    Liu, Yong
    Kang, Weimin
    POLYMER, 2024, 312
  • [22] Multichannel driving triboelectric nanogenerator for enhancing the output charge density
    Zhang, Ruichao
    Hao, Mingmin
    Bai, Suo
    Song, Peizu
    Jia, Xiaofeng
    Gao, Weihao
    Xu, Qi
    Wen, Juan
    Cheng, Li
    Qin, Yong
    NANO ENERGY, 2022, 98
  • [23] Enhancing Output Performance of Triboelectric Nanogenerator via Charge Clamping
    Wang, Jianlong
    Yu, Xin
    Zhao, Da
    Yu, Yang
    Gao, Qi
    Cheng, Tinghai
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2021, 11 (31)
  • [24] An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment
    Guo, Hengyu
    Chen, Jun
    Yeh, Min-Hsin
    Fan, Xing
    Wen, Zhen
    Li, Zhaoling
    Hu, Chenguo
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (05) : 5577 - 5584
  • [25] Triboelectric nanogenerator for harvesting ultra-high-speed wind energy with high-frequency output
    Bai, Yanan
    Zhu, Wenxuan
    Zhang, Maoyi
    Hasan, Md Al Mahadi
    Bowen, Chris R.
    Yang, Ya
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (13) : 9101 - 9110
  • [26] High-performance coaxial reversal rotational triboelectric nanogenerator based on charge pumping strategy driving tip high voltage breakdown
    Hao, Congcong
    Wang, Zekun
    Cai, Mingzhe
    Liu, Tingshan
    Zhai, Cong
    Cui, Juan
    Zheng, Yongqiu
    Xue, Chenyang
    NANO ENERGY, 2024, 128
  • [27] Effect of surface and contact points modification on the output performance of triboelectric nanogenerator
    Mishra, Siju
    Supraja, P.
    Haranath, D.
    Kumar, R. Rakesh
    Pola, Someshwar
    NANO ENERGY, 2022, 104
  • [28] Electrical output performance of triboelectric nanogenerator based on magnetic high entropy alloy
    Liu, Meng-Nan
    Wang, Lu-Yao
    Wang, Peng
    Wu, Lin-Xin
    Yin, Fang
    Zhang, Jun
    Long, Yun-Ze
    RARE METALS, 2025, : 2547 - 2563
  • [29] ENHANCING THE OUTPUT CHARGE DENSITY OF TRIBOELECTRIC NANOGENERATOR VIA BUILDING CHARGE BLOCKING LAYER
    Gao, Lingxiao
    Chen, Xin
    Wang, Fayang
    Tong, Daqiao
    He, Xianming
    Mu, Xiaojing
    2021 34TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2021), 2021, : 238 - 241
  • [30] Cationic metal-organic framework with charge separation effect as a high output triboelectric nanogenerator material for self-powered anticorrosion
    Shao, Zhichao
    Cheng, Haoran
    Wei, Yi
    Chen, Junshuai
    Gao, Kexin
    Fang, Zhe
    Yan, Yangshuang
    Mi, Liwei
    Hou, Hongwei
    DALTON TRANSACTIONS, 2023, 52 (37) : 13316 - 13323