Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production

被引:3
作者
Huang, Mengtian [1 ,2 ]
Cui, Xinxin [1 ]
Zhang, Peining [1 ]
Jin, Zhuocheng [1 ]
Li, Huanan [1 ]
Liu, Jiashu [1 ]
Jiang, Zhengbing [1 ,3 ]
机构
[1] Hubei Univ, Sch Life Sci, State Key Lab Biocatalysis & Enzyme Engn, Wuhan, Peoples R China
[2] Hubei Engn Univ, Coll Life Sci & Technol, Xiaogan, Peoples R China
[3] Hubei Univ, Sch life Sci, State Key Lab Biocatalysis & Enzyme Engn, Wuhan 430062, Peoples R China
关键词
Saccharomyces cerevisiae; transcriptome analysis; xylose and glucose fermentation; xylose isomerase; xylose transporter; PENTOSE-PHOSPHATE PATHWAY; STRAINS; IDENTIFICATION; TRANSKETOLASE; EVOLUTION; GENES; PE-2;
D O I
10.1080/10826068.2024.2315479
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Saccharomyces cerevisiae cannot assimilate xylose, second to glucose derived from lignocellulosic biomass. Here, the engineered S. cerevisiae strains INVSc-XI and INVSc-XI/XT were constructed using xylA and Xltr1p to co-utilize xylose and glucose, achieving economic viability and sustainable production of fuels. The xylose utilization rate of INVSc-XI/XT was 2.3-fold higher than that of INVSc-XI, indicating that overexpressing Xltr1p could further enhance xylose utilization. In mixed sugar media, a small amount of glucose enhanced the consumption of xylose by INVSc-XI/XT. Transcriptome analysis showed that glucose increased the upregulation of acetate of coenzyme A synthetase (ACS), alcohol dehydrogenase (ADH), and transketolase (TKL) gene expression in INVSc-XI/XT, further promoting xylose utilization and ethanol yield. The highest ethanol titer of 2.91 g/L with a yield of 0.29 g/g at 96 h by INVSc-XI/XT was 56.9% and 63.0% of the theoretical ethanol yield from glucose and xylose, respectively. These results showed overexpression of xylA and Xltr1p is a promising strategy for improving xylose and glucose conversion to ethanol. Although the ability of strain INVSc-XI/XT to produce ethanol was not very satisfactory, glucose was discovered to influence xylose utilization in strain INVSc-XI/XT. Altering the glucose concentration is a promising strategy to improve the xylose and glucose co-utilization.
引用
收藏
页码:1058 / 1067
页数:10
相关论文
共 48 条
[1]   Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae [J].
Apel, Amanda Reider ;
Ouellet, Mario ;
Szmidt-Middleton, Heather ;
Keasling, Jay D. ;
Mukhopadhyay, Aindrila .
SCIENTIFIC REPORTS, 2016, 6
[2]   Directed evolution and secretory expression of xylose isomerase for improved utilisation of xylose in Saccharomyces cerevisiae [J].
Bae, Jung-Hoon ;
Kim, Mi-Jin ;
Sung, Bong Hyun ;
Jin, Yong-Su ;
Sohn, Jung-Hoon .
BIOTECHNOLOGY FOR BIOFUELS, 2021, 14 (01)
[3]   D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers [J].
Brink, Daniel P. ;
Borgstrom, Celina ;
Persson, Viktor C. ;
Ofuji Osiro, Karen ;
Gorwa-Grauslund, Marie F. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (22)
[4]   Efficient xylose utilization leads to highest lipid productivity in Candida tropicalis SY005 among six yeast strains grown in mixed sugar medium [J].
Chattopadhyay, Atrayee ;
Maiti, Mrinal K. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (07) :3133-3144
[5]   Fermentation of D-xylose to Ethanol by Saccharomyces cerevisiae CAT-1 Recombinant Strains [J].
Coimbra, Lucia ;
Malan, Karen ;
Fagundez, Alejandra ;
Guigou, Mairan ;
Lareo, Claudia ;
Fernandez, Belen ;
Pratto, Martin ;
Batista, Silvia .
BIOENERGY RESEARCH, 2023, 16 (02) :1001-1012
[6]   Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae [J].
Conrad, Michaela ;
Schothorst, Joep ;
Kankipati, Harish Nag ;
Van Zeebroeck, Griet ;
Rubio-Texeira, Marta ;
Thevelein, Johan M. .
FEMS MICROBIOLOGY REVIEWS, 2014, 38 (02) :254-299
[7]   Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions [J].
Costa, Carlos E. ;
Romani, Aloia ;
Cunha, Joana T. ;
Johansson, Bjorn ;
Domingues, Lucilia .
BIORESOURCE TECHNOLOGY, 2017, 227 :24-34
[8]   EngineeredSaccharomyces cerevisiaefor lignocellulosic valorization: a review and perspectives on bioethanol production [J].
Cunha, Joana T. ;
Soares, Pedro O. ;
Baptista, Sara L. ;
Costa, Carlos E. ;
Domingues, Lucilia .
BIOENGINEERED, 2020, 11 (01) :883-903
[9]   Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways [J].
Cunha, Joana T. ;
Soares, Pedro O. ;
Romani, Aloia ;
Thevelein, Johan M. ;
Domingues, Lucilia .
BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (1)
[10]   Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors [J].
Cunha, Joana T. ;
Aguiar, Tatiana Q. ;
Romani, Aloia ;
Oliveira, Carla ;
Domingues, Lucilia .
BIORESOURCE TECHNOLOGY, 2015, 191 :7-16