Molecular simulation of the dynamic distribution of complex oil components in shale nanopores during CO2-EOR

被引:14
|
作者
Huang, Tao [1 ]
Cheng, Linsong [1 ]
Cao, Renyi [1 ]
Wang, Xiaobiao [1 ]
Jia, Pin [1 ]
Cao, Chong [1 ]
机构
[1] China Univ Petr, Coll Petr Engn, Beijing 102245, Peoples R China
关键词
Dynamic distribution; Molecular dynamics; Complex oil components; Adsorption layer; CO2-EOR; CARBON-DIOXIDE; CO2; INJECTION; ORGANIC TYPE; ADSORPTION; KEROGEN; BEHAVIORS; MIXTURES; MOISTURE; CALCITE; METHANE;
D O I
10.1016/j.cej.2023.147743
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the high clay content of shale reservoirs, developing shale oil by water flooding is difficult. CO2 is easier to inject into formations than water, significantly increasing shale oil production by reducing the viscosity of shale oil and increasing the gas-oil ratio. Moreover, CO2 flooding can also effectively reduce emissions. However, CO2 flooding changes the formation fluid's phase behavior and composition. This causes the fluid to redistribute in the nanopore. Based on the field data, it can be seen that the changes of formation fluid components are obvious in the three stages of CO2 injection, the initial state of production and depressurization production. Therefore, this paper uses the molecular dynamics method to study the changes in adsorption layer thickness, adsorption ratio of components, interaction energy, and self-diffusion coefficient of fluids in organic and inorganic pores under these three stages. The results show that the adsorption layer thickness gradually increases during CO2 flooding. After CO2 injection, the fluid components in kerogen are significantly desorbed. The desorption of the components in the small pore size of illite, feldspar, and calcite is insignificant; the desorption of the components in the large pore size is significant, and the desorption of the components in quartz is insignificant. The interaction energy between fluid and pores decreases first and then increases during CO2 flooding, and the types of interaction energy between pores and fluids differ. The results show that CO2 injection can increase shale oil production. New ways to enhance oil recovery are needed to increase shale oil production in the later stage of depressurization production.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Dynamic Behaviors of CO2 Enhanced Shale Oil Flow in Nanopores by Molecular Simulation
    Tian, Kangjian
    Wang, Tianyu
    Ma, Zhengchao
    Weng, Jintao
    Zhou, Xiaoxia
    Dai, Jiacheng
    Zhang, Ye
    Tian, Shouceng
    SPE JOURNAL, 2025, 30 (02): : 913 - 929
  • [2] Molecular insight into the oil displacement mechanism of CO2 flooding in the nanopores of shale oil reservoir
    Dong, Xiao-Hu
    Xu, Wen-Jing
    Liu, Hui-Qing
    Chen, Zhang-Xing
    Lu, Ning
    PETROLEUM SCIENCE, 2023, 20 (06) : 3516 - 3529
  • [3] Adsorption layer of complex oil components in organic-rich shale: A molecular dynamics simulation study
    Huang, Tao
    Cheng, Linsong
    Jia, Zhihao
    Cao, Renyi
    Jia, Pin
    Wang, Yuanzheng
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 228
  • [4] Dynamic PVT model for CO2-EOR black-oil simulations
    Sandve, Tor Harald
    Saevareid, Ove
    Aavatsmark, Ivar
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (04) : 1029 - 1043
  • [5] Economic evaluation on CO2-EOR of onshore oil fields in China
    Wei, Ning
    Li, Xiaochun
    Dahowski, Robert T.
    Davidson, Casie L.
    Liu, Shengnan
    Zha, Yongjin
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 37 : 170 - 181
  • [6] Conflicting Long-Term CO2 Effects on Shale Oil Formations for Simultaneous CO2 Sequestration and CO2-EOR
    Hu, Wenjin
    Lun, Zengmin
    Wang, Haitao
    Zhao, Chunpeng
    Zhou, Xia
    Meng, Zhan
    Zhu, Peng
    Zhang, Dengfeng
    Zou, Jie
    ENERGY & FUELS, 2024, 38 (18) : 17441 - 17457
  • [7] Mechanism of shale oil displacement by CO2 in nanopores: A molecular dynamics simulation study
    Wu, Zhengbin
    Sun, Zhe
    Shu, Kun
    Jiang, Shu
    Gou, Qiyang
    Chen, Zhangxing
    ADVANCES IN GEO-ENERGY RESEARCH, 2024, 11 (02): : 141 - 151
  • [8] Molecular simulation of CH4and CO2adsorption in shale organic nanopores
    Zhou, Wenning
    Li, Song
    Lu, Wei
    Zhu, Jiadan
    Liu, Ying
    MOLECULAR SIMULATION, 2023, 49 (12) : 1195 - 1202
  • [9] Impact of variation in multicomponent diffusion coefficients and salinity in CO2-EOR: A numerical study using molecular dynamics simulation
    Babaei, Masoud
    Mu, Junju
    Masters, Andrew J.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 162 : 685 - 696
  • [10] Multiphase transient analysis of horizontal wells during CO2-EOR
    Li, Longlong
    Wu, Minglu
    Liu, Yuewu
    Ding, Jiuge
    Abushaikha, Ahmad
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 210