Using Graph Neural Networks for Social Recommendations

被引:0
|
作者
Tallapally, Dharahas [1 ]
Wang, John [2 ]
Potika, Katerina [1 ]
Eirinaki, Magdalini [2 ]
机构
[1] San Jose State Univ, Dept Comp Sci, San Jose, CA 95192 USA
[2] San Jose State Univ, Dept Comp Engn, San Jose, CA 95192 USA
关键词
social recommendation algorithm; graph neural networks; recommender systems; social network; influence diffusion;
D O I
10.3390/a16110515
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems have revolutionized the way users discover and engage with content. Moving beyond the collaborative filtering approach, most modern recommender systems leverage additional sources of information, such as context and social network data. Such data can be modeled using graphs, and the recent advances in Graph Neural Networks have led to the prominence of a new family of graph-based recommender system algorithms. In this work, we propose the RelationalNet algorithm, which not only models user-item, and user-user relationships but also item-item relationships with graphs and uses them as input to the recommendation process. The rationale for utilizing item-item interactions is to enrich the item embeddings by leveraging the similarities between items. By using Graph Neural Networks (GNNs), RelationalNet incorporates social influence and similar item influence into the recommendation process and captures more accurate user interests, especially when traditional methods fall short due to data sparsity. Such models improve the accuracy and effectiveness of recommendation systems by leveraging social connections and item interactions. Results demonstrate that RelationalNet outperforms current state-of-the-art social recommendation algorithms.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] SiReN: Sign-Aware Recommendation Using Graph Neural Networks
    Seo, Changwon
    Jeong, Kyeong-Joong
    Lim, Sungsu
    Shin, Won-Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4729 - 4743
  • [22] Popularity Prediction on Social Platforms with Coupled Graph Neural Networks
    Cao, Qi
    Shen, Huawei
    Gao, Hnhua
    Wei, Bingzheng
    Cheng, Xuegi
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 70 - 78
  • [23] On the Power of Graph Neural Networks and Feature Augmentation Strategies to Classify Social Networks
    Guettala, Walid
    Gulyas, Laszlo
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, ACIIDS 2024, 2024, 14796 : 287 - 301
  • [24] Graph Neural Networks with Dynamic and Static Representations for Social Recommendation
    Lin, Junfa
    Chen, Siyuan
    Wang, Jiahai
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 264 - 271
  • [25] Multirelational Collaborative Filtering for Global Graph Neural Networks to Mine Evolutional Social Relations
    Deng, Xiaoheng
    Jiang, Ping
    Chen, Xuechen
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (04): : 4851 - 4861
  • [26] Rumor detection on social media using hierarchically aggregated feature via graph neural networks
    Shouzhi Xu
    Xiaodi Liu
    Kai Ma
    Fangmin Dong
    Basheer Riskhan
    Shunzhi Xiang
    Changsong Bing
    Applied Intelligence, 2023, 53 : 3136 - 3149
  • [27] Rumor detection on social media using hierarchically aggregated feature via graph neural networks
    Xu, Shouzhi
    Liu, Xiaodi
    Ma, Kai
    Dong, Fangmin
    Riskhan, Basheer
    Xiang, Shunzhi
    Bing, Changsong
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3136 - 3149
  • [28] Enhancing federated learning-based social recommendations with graph attention networks
    Xu, Zhihui
    Li, Bing
    Cao, Wenming
    NEUROCOMPUTING, 2025, 617
  • [29] Graph Neural Networks for Graph Drawing
    Tiezzi, Matteo
    Ciravegna, Gabriele
    Gori, Marco
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4668 - 4681
  • [30] Graph Clustering with Graph Neural Networks
    Tsitsulin, Anton
    Palowitch, John
    Perozzi, Bryan
    Mueller, Emmanuel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24