Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov-Maxwell equations

被引:0
|
作者
Galindo-Olarte, Andres [1 ]
Huang, Juntao [2 ]
Ryan, Jennifer [3 ]
Cheng, Yingda [4 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 70409 USA
[3] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[4] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
Discontinuous Galerkin; Vlasov-Maxwell system; Superconvergence; Post-processing; SCHEME; INSTABILITY; INTEGRATION; PLASMA;
D O I
10.1007/s10543-023-00993-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper explores the discontinuous Galerkin (DG) methods for solving the Vlasov-Maxwell (VM) system, a fundamental model for collisionless magnetized plasma. The DG method provides an accurate numerical description with conservation and stability properties. This work studies the applicability of a post-processing technique to the DG solution in order to enhance its accuracy and resolution for the VM system. In particular, superconvergence in the negative-order norm for the probability distribution function and the electromagnetic fields is established for the DG solution. Numerical tests including Landau damping, two-stream instability, and streaming Weibel instabilities are considered showing the performance of the post-processor.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov–Maxwell equations
    Andrés Galindo-Olarte
    Juntao Huang
    Jennifer Ryan
    Yingda Cheng
    BIT Numerical Mathematics, 2023, 63
  • [2] DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS
    Cheng, Yingda
    Gamba, Irene M.
    Li, Fengyan
    Morrison, Philip J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 1017 - 1049
  • [3] Discontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System
    Yang, He
    Li, Fengyan
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 1216 - 1248
  • [4] The multi-dimensional Hermite-discontinuous Galerkin method for the Vlasov-Maxwell equations
    Koshkarov, O.
    Manzini, G.
    Delzanno, G. L.
    Pagliantini, C.
    Roytershteyn, V.
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 264
  • [5] Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system
    Tao Z.
    Guo W.
    Cheng Y.
    Journal of Computational Physics: X, 2019, 3
  • [6] ON THE STATIONARY SOLUTIONS FOR THE SYSTEM OF THE VLASOV-MAXWELL EQUATIONS
    RUDYKH, GA
    SIDOROV, NA
    SINITSYN, AV
    DOKLADY AKADEMII NAUK SSSR, 1988, 302 (03): : 594 - 597
  • [7] On the Vlasov-Maxwell equations
    Parsa, Z
    Zadorozhny, V
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 3042 - 3044
  • [8] Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system
    Cheng, Yingda
    Christlieb, Andrew J.
    Zhong, Xinghui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 279 : 145 - 173
  • [9] LOCAL EXISTENCE OF SMOOTH SOLUTIONS OF THE VLASOV-MAXWELL EQUATIONS, AND APPROXIMATION BY THE SOLUTIONS OF THE VLASOV-POISSON EQUATIONS
    DEGOND, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (19): : 877 - 880
  • [10] ERROR ESTIMATES OF RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL SYSTEM
    Yang, He
    Li, Fengyan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 69 - 99