Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov-Maxwell equations

被引:0
|
作者
Galindo-Olarte, Andres [1 ]
Huang, Juntao [2 ]
Ryan, Jennifer [3 ]
Cheng, Yingda [4 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 70409 USA
[3] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[4] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
Discontinuous Galerkin; Vlasov-Maxwell system; Superconvergence; Post-processing; SCHEME; INSTABILITY; INTEGRATION; PLASMA;
D O I
10.1007/s10543-023-00993-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper explores the discontinuous Galerkin (DG) methods for solving the Vlasov-Maxwell (VM) system, a fundamental model for collisionless magnetized plasma. The DG method provides an accurate numerical description with conservation and stability properties. This work studies the applicability of a post-processing technique to the DG solution in order to enhance its accuracy and resolution for the VM system. In particular, superconvergence in the negative-order norm for the probability distribution function and the electromagnetic fields is established for the DG solution. Numerical tests including Landau damping, two-stream instability, and streaming Weibel instabilities are considered showing the performance of the post-processor.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov–Maxwell equations
    Andrés Galindo-Olarte
    Juntao Huang
    Jennifer Ryan
    Yingda Cheng
    BIT Numerical Mathematics, 2023, 63
  • [2] DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS
    Cheng, Yingda
    Gamba, Irene M.
    Li, Fengyan
    Morrison, Philip J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 1017 - 1049
  • [3] Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system
    Cheng, Yingda
    Christlieb, Andrew J.
    Zhong, Xinghui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 279 : 145 - 173
  • [4] Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system
    Tao Z.
    Guo W.
    Cheng Y.
    Journal of Computational Physics: X, 2019, 3
  • [5] Hamiltonian splitting for the Vlasov-Maxwell equations
    Crouseilles, Nicolas
    Einkemmer, Lukas
    Faou, Erwan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 283 : 224 - 240
  • [6] ERROR ESTIMATES OF RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL SYSTEM
    Yang, He
    Li, Fengyan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 69 - 99
  • [7] Perturbative variational formulation of the Vlasov-Maxwell equations
    Brizard, Alain J.
    PHYSICS OF PLASMAS, 2018, 25 (11)
  • [8] Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations"
    Qin, Hong
    He, Yang
    Zhang, Ruili
    Liu, Jian
    Xiao, Jianyuan
    Wang, Yulei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 : 721 - 723
  • [9] CONCENTRATING SOLUTIONS OF THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    Ben-Artzi, Jonathan
    Calogero, Simone
    Pankavich, Stephen
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (02) : 377 - 392
  • [10] Smooth solutions to the relativistic Vlasov-Maxwell system
    Pallard, Christophe
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 : 87 - 94