Emotion recognition and artificial intelligence: A systematic review (2014-2023) and research recommendations

被引:78
作者
Khare, Smith K. [1 ]
Blanes-Vidal, Victoria [1 ]
Nadimi, Esmaeil S. [1 ]
Acharya, U. Rajendra [2 ]
机构
[1] Univ Southern Denmark, Maersk Mc Kinney Moller Inst, Fac Engn, Appl & Data Sci Unit, Odense, Denmark
[2] Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld, Australia
关键词
Emotion recognition; Speech; Facial images; Electroencephalogram; Electrocardiogram; Eye tracking; Galvanic skin response; Artificial intelligence; Machine learning; Deep learning; FEATURE-EXTRACTION; NEURAL-NETWORK; LEARNING TECHNIQUES; MODE DECOMPOSITION; SPEECH; EEG; CHILDREN; ATTENTION; SIGNALS; ELECTROCARDIOGRAM;
D O I
10.1016/j.inffus.2023.102019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion recognition is the ability to precisely infer human emotions from numerous sources and modalities using questionnaires, physical signals, and physiological signals. Recently, emotion recognition has gained attention because of its diverse application areas, like affective computing, healthcare, human-robot interactions, and market research. This paper provides a comprehensive and systematic review of emotion recognition techniques of the current decade. The paper includes emotion recognition using physical and physiological signals. Physical signals involve speech and facial expression, while physiological signals include electroencephalogram, electrocardiogram, galvanic skin response, and eye tracking. The paper provides an introduction to various emotion models, stimuli used for emotion elicitation, and the background of existing automated emotion recognition systems. This paper covers comprehensive searching and scanning of wellknown datasets followed by design criteria for review. After a thorough analysis and discussion, we selected 142 journal articles using PRISMA guidelines. The review provides a detailed analysis of existing studies and available datasets of emotion recognition. Our review analysis also presented potential challenges in the existing literature and directions for future research.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Artificial Intelligence in Schools: A Systematic Review (2019-2023)
    Bula, Robin Bustamante
    Bonilla, Aureliano Camacho
    ENUNCIACION, 2024, 29 (01): : 62 - 82
  • [32] Exploring emotional intelligence in artificial intelligence systems: a comprehensive analysis of emotion recognition and response mechanisms
    Narimisaei, Jale
    Naeim, Mahdi
    Imannezhad, Shima
    Samian, Pooya
    Sobhani, Mohammadreza
    ANNALS OF MEDICINE AND SURGERY, 2024, 86 (08): : 4657 - 4663
  • [33] Guidelines on clinical research evaluation of artificial intelligence in ophthalmology (2023)
    Yang, Wei-Hua
    Shao, Yi
    Xu, Yan-Wu
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2023, 16 (09) : 1361 - 1372
  • [34] Artificial intelligence in information systems research: A systematic literature review and research agenda
    Collins, Christopher
    Dennehy, Denis
    Conboy, Kieran
    Mikalef, Patrick
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2021, 60
  • [35] An Evidence-Based Systematic Review: The Impact of Artificial Intelligence in Pharmacology and Health Research
    Gudadappanavar, Anupama M.
    Hombal, Prashant
    Benni, Jyoti M.
    PHYSIOLOGY AND PHARMACOLOGY, 2024, 28 (03): : 257 - 270
  • [36] Artificial intelligence-based suicide prevention and prediction: A systematic review (2019-2023)-2023)
    Atmakuru, Anirudh
    Shahini, Alen
    Chakraborty, Subrata
    Seoni, Silvia
    Salvi, Massimo
    Hafeez-Baig, Abdul
    Rashid, Sadaf
    San Tan, Ru
    Barua, Prabal Datta
    Molinari, Filippo
    Acharya, U. Rajendra
    INFORMATION FUSION, 2025, 114
  • [37] Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 1-Overview of Knowledge Discovery Techniques in Artificial Intelligence
    Sessa, Maurizio
    Khan, Abdul Rauf
    Liang, David
    Andersen, Morten
    Kulahci, Murat
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [38] Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review
    Papalia, Giuseppe Francesco
    Brigato, Paolo
    Sisca, Luisana
    Maltese, Girolamo
    Faiella, Eliodoro
    Santucci, Domiziana
    Pantano, Francesco
    Vincenzi, Bruno
    Tonini, Giuseppe
    Papalia, Rocco
    Denaro, Vincenzo
    CANCERS, 2024, 16 (15)
  • [39] Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations
    Dankelman, Lente H. M.
    Schilstra, Sanne
    IJpma, Frank F. A.
    Doornberg, Job N.
    Colaris, Joost W.
    Verhofstad, Michael H. J.
    Wijffels, Mathieu M. E.
    Prijs, Jasper
    EUROPEAN JOURNAL OF TRAUMA AND EMERGENCY SURGERY, 2023, 49 (02) : 681 - 691
  • [40] Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations
    Lente H. M. Dankelman
    Sanne Schilstra
    Frank F. A. IJpma
    Job N. Doornberg
    Joost W. Colaris
    Michael H. J. Verhofstad
    Mathieu M. E. Wijffels
    Jasper Prijs
    European Journal of Trauma and Emergency Surgery, 2023, 49 : 681 - 691