Emotion recognition and artificial intelligence: A systematic review (2014-2023) and research recommendations

被引:116
作者
Khare, Smith K. [1 ]
Blanes-Vidal, Victoria [1 ]
Nadimi, Esmaeil S. [1 ]
Acharya, U. Rajendra [2 ]
机构
[1] Univ Southern Denmark, Maersk Mc Kinney Moller Inst, Fac Engn, Appl & Data Sci Unit, Odense, Denmark
[2] Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld, Australia
关键词
Emotion recognition; Speech; Facial images; Electroencephalogram; Electrocardiogram; Eye tracking; Galvanic skin response; Artificial intelligence; Machine learning; Deep learning; FEATURE-EXTRACTION; NEURAL-NETWORK; LEARNING TECHNIQUES; MODE DECOMPOSITION; SPEECH; EEG; CHILDREN; ATTENTION; SIGNALS; ELECTROCARDIOGRAM;
D O I
10.1016/j.inffus.2023.102019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion recognition is the ability to precisely infer human emotions from numerous sources and modalities using questionnaires, physical signals, and physiological signals. Recently, emotion recognition has gained attention because of its diverse application areas, like affective computing, healthcare, human-robot interactions, and market research. This paper provides a comprehensive and systematic review of emotion recognition techniques of the current decade. The paper includes emotion recognition using physical and physiological signals. Physical signals involve speech and facial expression, while physiological signals include electroencephalogram, electrocardiogram, galvanic skin response, and eye tracking. The paper provides an introduction to various emotion models, stimuli used for emotion elicitation, and the background of existing automated emotion recognition systems. This paper covers comprehensive searching and scanning of wellknown datasets followed by design criteria for review. After a thorough analysis and discussion, we selected 142 journal articles using PRISMA guidelines. The review provides a detailed analysis of existing studies and available datasets of emotion recognition. Our review analysis also presented potential challenges in the existing literature and directions for future research.
引用
收藏
页数:36
相关论文
共 296 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]   A comprehensive review of facial expression recognition techniques [J].
Adyapady, R. Rashmi ;
Annappa, B. .
MULTIMEDIA SYSTEMS, 2023, 29 (01) :73-103
[3]  
Aifanti N., 2010, 11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10
[4]   Facial Emotion Recognition Using Transfer Learning in the Deep CNN [J].
Akhand, M. A. H. ;
Roy, Shuvendu ;
Siddique, Nazmul ;
Kamal, Md Abdus Samad ;
Shimamura, Tetsuya .
ELECTRONICS, 2021, 10 (09)
[5]   Database for an emotion recognition system based on EEG signals and various computer games - GAMEEMO [J].
Alakus, Talha Burak ;
Gonen, Murat ;
Turkoglu, Ibrahim .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 60
[6]   EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution [J].
Alazrai, Rami ;
Homoud, Rasha ;
Alwanni, Hisham ;
Daoud, Mohammad I. .
SENSORS, 2018, 18 (08)
[7]   Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification [J].
Rodriguez, Pau ;
Cucurull, Guillem ;
Gonzalez, Jordi ;
Gonfaus, Josep M. ;
Nasrollahi, Kamal ;
Moeslund, Thomas B. ;
Roca, F. Xavier .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) :3314-3324
[8]   Handling of uncertainty in medical data using machine learning and probability theory techniques: a review of 30 years (1991-2020) [J].
Alizadehsani, Roohallah ;
Roshanzamir, Mohamad ;
Hussain, Sadiq ;
Khosravi, Abbas ;
Koohestani, Afsaneh ;
Zangooei, Mohammad Hossein ;
Abdar, Moloud ;
Beykikhoshk, Adham ;
Shoeibi, Afshin ;
Zare, Assef ;
Panahiazar, Maryam ;
Nahavandi, Saeid ;
Srinivasan, Dipti ;
Atiya, Amir F. ;
Acharya, U. Rajendra .
ANNALS OF OPERATIONS RESEARCH, 2024, 339 (03) :1077-1118
[9]   Emotion recognition and social cognition in temporal lobe epilepsy and the effect of epilepsy surgery [J].
Amlerova, Jana ;
Cavanna, Andrea E. ;
Bradac, Ondrej ;
Javurkova, Alena ;
Raudenska, Jaroslava ;
Marusic, Petr .
EPILEPSY & BEHAVIOR, 2014, 36 :86-89
[10]   Modeling Stylized Character Expressions via Deep Learning [J].
Aneja, Deepali ;
Colburn, Alex ;
Faigin, Gary ;
Shapiro, Linda ;
Mones, Barbara .
COMPUTER VISION - ACCV 2016, PT II, 2017, 10112 :136-153