Facile Synthesis of Co Nanoparticles Embedded in N-Doped Carbon Nanotubes/Graphitic Nanosheets as Bifunctional Electrocatalysts for Electrocatalytic Water Splitting

被引:2
|
作者
Yang, Wei [1 ]
Li, Han [2 ]
Li, Pengzhang [2 ]
Xie, Linhua [2 ]
Liu, Yumin [2 ]
Cao, Zhenbao [2 ]
Tian, Chuanjin [2 ]
Wang, Chang-An [2 ,3 ]
Xie, Zhipeng [2 ,3 ]
机构
[1] Jingdezhen Ceram Univ, Sch Mech & Elect Engn, Jingdezhen 333403, Peoples R China
[2] Jingdezhen Ceram Univ, Inst New Energy Mat & Devices, Sch Mat Sci & Engn, Jingdezhen 333403, Peoples R China
[3] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
来源
MOLECULES | 2023年 / 28卷 / 18期
基金
中国国家自然科学基金;
关键词
HER; OER; Co nanoparticles; bifunctional electrocatalyst; water splitting; OXYGEN REDUCTION; EFFICIENT; COBALT; GRAPHENE; NANOTUBES; GROWTH; ZINC; MECHANISM; ARRAYS;
D O I
10.3390/molecules28186709
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Developing robust and cost-effective electrocatalysts to boost hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) is crucially important to electrocatalytic water splitting. Herein, bifunctional electrocatalysts, by coupling Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets (Co@NCNTs/NG), were successfully synthesized via facile high-temperature pyrolysis and evaluated for water splitting. The morphology and particle size of products were influenced by the precursor type of the cobalt source (cobalt oxide or cobalt nitrate). The pyrolysis product prepared using cobalt oxide as a cobalt source (Co@NCNTs/NG-1) exhibited the smaller particle size and higher specific surface area than that of the pyrolysis products prepared using cobalt nitrate as a cobalt source (Co@NCNTs/NG-2). Notably, Co@NCNTs/NG-1 displayed much lower potential -0.222 V vs. RHE for HER and 1.547 V vs. RHE for OER at the benchmark current density of 10 mA cm-2 than that of Co@NCNTs/NG-2, which indicates the higher bifunctional catalytic activities of Co@NCNTs/NG-1. The water-splitting device using Co@NCNTs/NG-1 as both an anode and cathode demonstrated a potential of 1.92 V to attain 10 mA cm-2 with outstanding stability for 100 h. This work provides a facile pyrolysis strategy to explore highly efficient and stable bifunctional electrocatalysts for water splitting.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Facile synthesis of CoSe nanoparticles encapsulated in N-doped carbon nanotubes-grafted N-doped carbon nanosheets for water splitting
    Yang, Ming
    Yang, Yuanyuan
    Wang, Kaizhi
    Li, Shuwen
    Feng, Fan
    Lan, Kai
    Jiang, Pengbo
    Huang, Xiaokang
    Yang, Honglei
    Li, Rong
    ELECTROCHIMICA ACTA, 2020, 337 (337)
  • [2] Bagasse derived N-doped graphitic carbon encapsulated cobalt nanoparticles as an efficient bifunctional catalyst for water splitting reactions
    Kalusulingam, Rajathsing
    Ravi, Krishnan
    Mathi, Selvam
    Mikhailova, T. S.
    Srinivasan, Kannan
    V. Biradar, Ankush
    Myasoedova, T. N.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 692
  • [3] Single-crystalline CoFe nanoparticles encapsulated in N-doped carbon nanotubes as a bifunctional catalyst for water splitting
    Zeng, Xiaojun
    Jang, Myeong Je
    Choi, Sung Mook
    Cho, Hyun-Seok
    Kim, Chang-Hee
    Myung, Nosang Vincent
    Yin, Yadong
    MATERIALS CHEMISTRY FRONTIERS, 2020, 4 (08) : 2307 - 2313
  • [4] Fe, Co, N-doped carbon nanotubes as bifunctional oxygen electrocatalysts
    Morais, R. G.
    Rey-Raap, N.
    Figueiredo, J. L.
    Pereira, M. F. R.
    APPLIED SURFACE SCIENCE, 2022, 572
  • [5] CoP nanoparticles embedded in P and N co-doped carbon as efficient bifunctional electrocatalyst for water splitting
    Zhou, Zeqi
    Mahmood, Nasir
    Zhang, Yongchao
    Pan, Lun
    Wang, Li
    Zhang, Xiangwen
    Zou, Ji-Jun
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (06) : 1223 - 1230
  • [6] CoP nanoparticles encapsulated by graphitic layers and anchored to N-doped carbon nanoplates for enhanced bifunctional electrocatalytic properties for overall water splitting
    Li, Linghui
    Song, Li
    Xue, Hairong
    Jiang, Cheng
    Gao, Bin
    Gong, Hao
    Xia, Wei
    Fan, Xiaoli
    Guo, Hu
    Wang, Tao
    He, Jianping
    CARBON, 2019, 150 : 446 - 454
  • [7] Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting
    Wu, Zhen-Yu
    Ji, Wen-Bo
    Hu, Bi-Cheng
    Liang, Hai-Wei
    Xu, Xing-Xing
    Yu, Zhi-Long
    Li, Bo-Yang
    Yu, Shu-Hong
    NANO ENERGY, 2018, 51 : 286 - 293
  • [8] Transition metal electrocatalysts encapsulated into N-doped carbon nanotubes on reduced graphene oxide nanosheets: efficient water splitting through synergistic effects
    Wan, Wenchao
    Wei, Shiqian
    Li, Jingguo
    Triana, Carlos A.
    Zhou, Ying
    Patzke, Greta R.
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (25) : 15145 - 15155
  • [9] A Facile Synthesis of FeCo Nanoparticles Encapsulated in Hierarchical N-Doped Carbon Nanotube/Nanofiber Hybrids for Overall Water Splitting
    Aftab, Faryal
    Duran, Hatice
    Kirchhoff, Katrin
    Zaheer, Muhammad
    Iqbal, Bushra
    Saleem, Murtaza
    Arshad, Salman N.
    CHEMCATCHEM, 2020, 12 (03) : 932 - 943
  • [10] Porous Ni Foams Filled by N-Doped Carbon Nanotubes Coated with N-Doped Ni3P and Ni Nanoparticles for Catalytic Water Splitting
    Lu, Bowen
    Wang, Yanhui
    Li, Wei
    Zhou, Shuyu
    Gao, Hongwei
    Zou, Qi
    Li, Jilong
    Zang, Jianbing
    ACS APPLIED NANO MATERIALS, 2021, 4 (07) : 7443 - 7453