Hybrid nanofluid flow past a biaxial stretching/shrinking permeable surface with radiation effect: Stability analysis and heat transfer optimization

被引:10
|
作者
Yahaya, Rusya Iryanti [1 ]
Mustafa, Mohd Shafie [2 ]
Arifin, Norihan Md [1 ,2 ]
Pop, Ioan [3 ]
Ali, Fadzilah Md [1 ,2 ]
Isa, Siti Suzilliana Putri Mohamed [1 ,4 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Dept Math & Stat, Upm Serdang 43400, Selangor, Malaysia
[3] Babes Bolyai Univ, Dept Math, Cluj Napoca 400084, Romania
[4] Univ Putra Malaysia, Ctr Fdn Studies Agr Sci, Upm Serdang 43400, Selangor, Malaysia
关键词
Biaxial stretching/shrinking sheet; Hybrid nanofluid; Radiation; Stability analysis; Response surface methodology; STAGNATION-POINT FLOW; THERMAL-RADIATION; MIXED CONVECTION; WILLIAMSON FLUID; CASSON NANOFLUID; UNSTEADY-FLOW; MHD FLOW; SHEET; PLATE;
D O I
10.1016/j.cjph.2023.06.003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fluid flow over a biaxial stretching/shrinking surface may arise in fiber production and wrapping processes. The current study considered the three-dimensional flow of a hybrid nanofluid past a biaxial stretching/shrinking sheet with thermal radiation and suction. This flow problem is translated into nonlinear partial differential equations and boundary conditions. After similarity transformations, the numerical computations are conducted using the bvp4c solver. The calculation yielded dual solutions that prompted a stability analysis, demonstrating that only the first solution is stable and significant. Cu-Al2O3/H2O hybrid nanofluid produced the highest temperature profile compared to Cu/H2O and Al2O3/H2O nanofluids. As observed from this study, a further increase in the temperature profile of the hybrid nanofluid can be achieved by enhancing the shrinking and radiation parameters. Meanwhile, the magnitude of the skin friction coefficient and heat transfer rate rises with the suction parameter. At the same time, the suction parameter reduces the thickness of the momentum and thermal boundary layers. Then, response surface methodology (RSM) is used to develop a correlation between the response, Nusselt number, Re  1/2 x Nux, and governing parameters of the problem. The RSM suggested that the suction parameter positively affects the heat transfer rate. However, the opposite behavior is observed for the nanoparticle volume fraction of Cu and Al2O3. The heat transfer rate is estimated to be optimized at 6.02216 when & phi;Cu = & phi;Al2O3 = 0.02 and S = 3.0.
引用
收藏
页码:402 / 420
页数:19
相关论文
共 50 条
  • [1] Hybrid nanofluid flow and heat transfer over a permeable biaxial stretching/shrinking sheet
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (07) : 3497 - 3513
  • [2] Hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking surface with a convective boundary condition
    Waini, I.
    Ishak, A.
    Pop, I.
    2ND INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS, 2019, 1366
  • [3] MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge
    I.WAINI
    A.ISHAK
    I.POP
    AppliedMathematicsandMechanics(EnglishEdition), 2020, 41 (03) : 507 - 520
  • [4] MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge
    Waini, I.
    Ishak, A.
    Pop, I.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2020, 41 (03) : 507 - 520
  • [5] MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge
    I. Waini
    A. Ishak
    I. Pop
    Applied Mathematics and Mechanics, 2020, 41 : 507 - 520
  • [6] Cross flow and heat transfer past a permeable stretching/shrinking sheet in a hybrid nanofluid
    Rosca, Natalia C.
    Rosca, Alin V.
    Jafarimoghaddam, Amin
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (04) : 1295 - 1319
  • [7] Flow and heat transfer over a permeable biaxial stretching/shrinking sheet in a nanofluid
    Teodor Groşan
    Ioan Pop
    Neural Computing and Applications, 2020, 32 : 4575 - 4582
  • [8] Flow and heat transfer over a permeable biaxial stretching/shrinking sheet in a nanofluid
    Grosan, Teodor
    Pop, Ioan
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (09): : 4575 - 4582
  • [9] MHD hybrid nanofluid flow with convective heat transfer over a permeable stretching/shrinking surface with radiation
    Wahid, Nur Syahirah
    Arifin, Norihan Md
    Khashi'ie, Najiyah Safwa
    Pop, Ioan
    Bachok, Norfifah
    Hafidzuddin, Ezad Hafidz
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (05) : 1706 - 1727
  • [10] Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    PHYSICA SCRIPTA, 2019, 94 (10)