The role of chitosan priming in induction of GABA shunt pathway during wheat seed germination under salt stress

被引:5
作者
Al-Quraan, N. A. [1 ]
Samarah, N. H. [2 ]
Rasheed, E. I. [1 ]
机构
[1] Jordan Univ Sci & Technol, Fac Sci & Arts, Dept Biotechnol & Genet Engn, Irbid 22110, Jordan
[2] Jordan Univ Sci & Technol, Fac Agr, Dept Plant Prod, Irbid 22110, Jordan
关键词
chitosan; GABA; salt stress; seed germination; Triticum durum; wheat; GAMMA-AMINOBUTYRIC-ACID; TRITICUM-AESTIVUM L; ARABIDOPSIS-THALIANA; SALINITY STRESS; SIGNAL-TRANSDUCTION; DEFENSE RESPONSES; OXIDATIVE STRESS; PLANT-RESPONSES; DROUGHT STRESS; TERM SALINITY;
D O I
10.32615/bp.2023.029
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity leads to a reduction in plant growth, germination, relative water content, and production of wheat plants worldwide. Chitosan showed a positive effect on plant growth and development and improved plant stress tolerance. The current study aimed to examine the effect of different chitosan concentrations on the gamma-aminobutyric acid (GABA) shunt pathway in germinating seeds of wheat (Triticum durum L.) under salt stress (25 -200 mM NaCl). We determined the seed germination pattern, seed moisture content, GABA shunt metabolites (GABA, glutamate, and alanine), oxidative damage in terms of malondialdehyde (MDA) accumulation, and the glutamate decarboxylase (GAD) mRNA transcription. Pre-treatment of wheat seeds with chitosan improved germination by enhancing germination percentage, seedling length, and seedling fresh and dry masses under salt stress. Data showed an increase in GABA shunt and their metabolites (alanine and glutamate), MDA content, and GAD mRNA transcription, and a decrease in germination percentage, seedling length, seedling fresh and dry masses for both untreated and chitosan-treated seeds under salt stress. Our results suggest that the elevation of GABA in chitosan-treated seeds was able to maintain metabolic stability under salt stress. The MDA content increased in chitosan-treated seeds as NaCl concentration increased, however, the increase was slightly lower than the MDA content in untreated seeds which confirmed that chitosan activates GAD mRNA expression that leads to activate GABA shunt to involve in the reduction of membrane damage and activation of reactive oxygen species scavenging systems under salt stress. Consequently, this study demonstrated that chitosan significantly enhanced the accumulation of GABA and amino acids metabolism to maintain the C:N balance and improved salt tolerance in wheat seeds during seed germination.
引用
收藏
页码:234 / 248
页数:15
相关论文
共 50 条
  • [31] Effects of solid matrix priming (SMP) and salt stress on broccoli and cauliflower seed germination and early seedling growth
    Wu, Lingyun
    Huo, Wenyu
    Yao, Dongwei
    Li, Ming
    SCIENTIA HORTICULTURAE, 2019, 255 : 161 - 168
  • [32] Seed priming with salicylic acid for improving germination attributes and early growth of wheat under salinity stress
    Damalas, Christos A.
    Koutroubas, Spyridon D.
    PLANT BIOSYSTEMS, 2025, 159 (02): : 239 - 246
  • [33] Seed Priming with Fullerol Improves Seed Germination, Seedling Growth and Antioxidant Enzyme System of Two Winter Wheat Cultivars under Drought Stress
    Kong, Haiyan
    Meng, Xiangzhan
    Akram, Nudrat Aisha
    Zhu, Fengru
    Hu, Jiaxing
    Zhang, Zhen
    PLANTS-BASEL, 2023, 12 (06):
  • [34] Physiological and Proteomic Analysis of Seed Germination under Salt Stress in Mulberry
    Wang, Yi
    Jiang, Wei
    Cheng, Junsen
    Guo, Wei
    Li, Yongquan
    Li, Chenlei
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (03):
  • [35] Alleviation of salinity stress during seed germination in wheat (Triticum aestivum) by potassium applications
    Yagmur, M.
    Kaydan, D.
    Okut, N.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2007, 77 (06): : 379 - 382
  • [36] Glutamate Receptor Homolog3.4 is Involved in Regulation o Seed Germination Under Salt Stress in Arabidopsis
    Cheng, Yao
    Zhang, Xiuxiu
    Sun, Tianyang
    Tian, Qiuying
    Zhang, Wen-Hao
    PLANT AND CELL PHYSIOLOGY, 2018, 59 (05) : 978 - 988
  • [37] Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.)
    Feghhenabi, Faride
    Hadi, Hashem
    Khodaverdiloo, Habib
    van Genuchten, Martinus Th
    AGRICULTURAL WATER MANAGEMENT, 2020, 231
  • [38] Seed priming with selenite enhances germination and seedling growth of Sorghum [Sorghum bicolor (L.) Moench] under salt stress
    Nie, Mengen
    Ning, Na
    Liang, Du
    Zhang, Haiping
    Li, Shuangshuang
    Li, Shuai
    Fan, Xinqi
    Zhang, Yizhong
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2023, 73 (01) : 42 - 53
  • [39] Integrative Transcriptomic and Proteomic Analyses of Molecular Mechanism Responding to Salt Stress during Seed Germination in Hulless Barley
    Lai, Yong
    Zhang, Dangquan
    Wang, Jinmin
    Wang, Juncheng
    Ren, Panrong
    Yao, Lirong
    Si, Erjing
    Kong, Yuhua
    Wang, Huajun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (01)
  • [40] Seed germination of two wheat species differing in their sensitivity to NaCl, in response to salt stress
    Jbir, N
    Ayadi, A
    Amar, S
    Chaïbi, W
    Brulfert, J
    JOURNAL OF TRACE AND MICROPROBE TECHNIQUES, 2002, 20 (04): : 625 - 637