The role of chitosan priming in induction of GABA shunt pathway during wheat seed germination under salt stress

被引:5
作者
Al-Quraan, N. A. [1 ]
Samarah, N. H. [2 ]
Rasheed, E. I. [1 ]
机构
[1] Jordan Univ Sci & Technol, Fac Sci & Arts, Dept Biotechnol & Genet Engn, Irbid 22110, Jordan
[2] Jordan Univ Sci & Technol, Fac Agr, Dept Plant Prod, Irbid 22110, Jordan
关键词
chitosan; GABA; salt stress; seed germination; Triticum durum; wheat; GAMMA-AMINOBUTYRIC-ACID; TRITICUM-AESTIVUM L; ARABIDOPSIS-THALIANA; SALINITY STRESS; SIGNAL-TRANSDUCTION; DEFENSE RESPONSES; OXIDATIVE STRESS; PLANT-RESPONSES; DROUGHT STRESS; TERM SALINITY;
D O I
10.32615/bp.2023.029
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity leads to a reduction in plant growth, germination, relative water content, and production of wheat plants worldwide. Chitosan showed a positive effect on plant growth and development and improved plant stress tolerance. The current study aimed to examine the effect of different chitosan concentrations on the gamma-aminobutyric acid (GABA) shunt pathway in germinating seeds of wheat (Triticum durum L.) under salt stress (25 -200 mM NaCl). We determined the seed germination pattern, seed moisture content, GABA shunt metabolites (GABA, glutamate, and alanine), oxidative damage in terms of malondialdehyde (MDA) accumulation, and the glutamate decarboxylase (GAD) mRNA transcription. Pre-treatment of wheat seeds with chitosan improved germination by enhancing germination percentage, seedling length, and seedling fresh and dry masses under salt stress. Data showed an increase in GABA shunt and their metabolites (alanine and glutamate), MDA content, and GAD mRNA transcription, and a decrease in germination percentage, seedling length, seedling fresh and dry masses for both untreated and chitosan-treated seeds under salt stress. Our results suggest that the elevation of GABA in chitosan-treated seeds was able to maintain metabolic stability under salt stress. The MDA content increased in chitosan-treated seeds as NaCl concentration increased, however, the increase was slightly lower than the MDA content in untreated seeds which confirmed that chitosan activates GAD mRNA expression that leads to activate GABA shunt to involve in the reduction of membrane damage and activation of reactive oxygen species scavenging systems under salt stress. Consequently, this study demonstrated that chitosan significantly enhanced the accumulation of GABA and amino acids metabolism to maintain the C:N balance and improved salt tolerance in wheat seeds during seed germination.
引用
收藏
页码:234 / 248
页数:15
相关论文
共 90 条
[51]   Herbivory: effects on plant abundance, distribution and population growth [J].
Maron, John L. ;
Crone, Elizabeth .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 273 (1601) :2575-2584
[52]   EFFECTS OF HEAT-SHOCK ON AMINO-ACID-METABOLISM OF COWPEA CELLS [J].
MAYER, RR ;
CHERRY, JH ;
RHODES, D .
PLANT PHYSIOLOGY, 1990, 94 (02) :796-810
[53]   Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat [J].
Mazzucotelli, Elisabetta ;
Tartari, Alfredo ;
Cattivelli, Luigi ;
Forlani, Giuseppe .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (14) :3755-3766
[54]   Plant hormones and seed germination [J].
Miransari, Mohammad ;
Smith, D. L. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2014, 99 :110-121
[55]   Pathogen impacts on plant communities: unifying theory, concepts, and empirical work [J].
Mordecai, Erin A. .
ECOLOGICAL MONOGRAPHS, 2011, 81 (03) :429-441
[56]  
Muzzarelli R.A.A., 1986, FILMOGENIC PROPERTIE, P389
[57]   Application of chitin and chitosan as elicitors of coumarins and furoquinolone alkaloids in Ruta graveolens L. (common rue) [J].
Orlita, Aleksandra ;
Sidwa-Gorycka, Matyda ;
Paszkiewicz, Monika ;
Malinski, Edmund ;
Kumirska, Jolanta ;
Siedlecka, Ewa M. ;
Lojkowska, Ewa ;
Stepnowski, Piotr .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2008, 51 :91-96
[58]   Comparative Physiological and Biochemical Changes in Tomato (Solanum lycopersicum L.) under Salt Stress and Recovery: Role of Antioxidant Defense and Glyoxalase Systems [J].
Parvin, Khursheda ;
Hasanuzzaman, Mirza ;
Bhuyan, M. H. M. Borhannuddin ;
Nahar, Kamrun ;
Mohsin, Sayed Mohammad ;
Fujita, Masayuki .
ANTIOXIDANTS, 2019, 8 (09)
[59]   The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.) [J].
Pongprayoon, Wasinee ;
Roytrakul, Sittiruk ;
Pichayangkura, Rath ;
Chadchawan, Supachitra .
PLANT GROWTH REGULATION, 2013, 70 (02) :159-173
[60]  
Rajaram S., 2001, The World Wheat Book: A History of Wheat Breeding, P579