Elaborating the improving SO2 resistance mechanism of CeWTi catalysts through framework confined ordered mesoporous structures for low-temperature NH3-SCR reaction

被引:29
|
作者
Li, Mengqian [1 ,2 ]
Huang, Xiaosheng [1 ,2 ]
Zhang, Guodong [1 ,2 ]
Tang, Zhicheng [1 ,2 ]
Hu, Dongcheng [3 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Oxo Synth & Select Oxidat, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys, Natl Engn Res Ctr Fine Petrochem Intermediates, Lanzhou 730000, Peoples R China
[3] Northwest Normal Univ, Coll Chem & Chem Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Framework confinement; Ordered mesoporous; NH3-SCR; Ce-W-Ti; SO2; tolerance; CEO2-TIO2; CATALYST; NOX REDUCTION; NH3; PERFORMANCE; TOLERANCE; DESIGN;
D O I
10.1016/j.seppur.2023.124555
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
It is still a significant challenge that enhancing SO2 tolerance on the Ce-based catalyst in NH3-SCR reaction at low temperature. In this paper, an ordered mesoporous Ce-W-Ti-E catalyst with a framework confined structure had been constructed. The active components were directly constrained in the ordered mesoporous TiO2 structure, forming the framework confined ordered mesoporous structure. The ordered mesoporous structures in the framework structure provided better specific surface area and abundant active sites for the catalyst. In addition, the confinement effect of the framework structure enhanced the interaction between Ce, W and Ti, thus speeding up the electron transfer efficiency and enhancing the redox capacity of the catalyst. Furthermore, the introduction of W also supplemented a large amount of surface acid sites, which can inhibit the adsorption of SO2 on the catalyst surface, reduce the deposition of sulfate and well protect the active sites from SO2 attack with the help of special confinement effect. Therefore, the framework confined structure Ce-W-Ti-E catalyst in the whole process of SCR showed a wide operating temperature window, better stability and strong sulfur resistance, thus extended the catalyst lifetime in the NH3-SCR process.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Elucidating the electron confinement effect on CeFeW/ZrO2 catalysts to enhance SO2 resistance in the low temperature NH3-SCR reaction
    Wang, Yuhang
    Zhang, Guodong
    Xi, Yongjie
    Tang, Zhicheng
    Feng, Hua
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 346
  • [22] Synthesis of CrOx/C catalysts for low temperature NH3-SCR with enhanced regeneration ability in the presence of SO2
    Yu, Shuohan
    Xu, Sheng
    Sun, Bowen
    Lu, Yiyang
    Li, Lulu
    Zou, Weixin
    Wang, Peng
    Gao, Fei
    Tang, Changjin
    Dong, Lin
    RSC ADVANCES, 2018, 8 (07) : 3858 - 3868
  • [23] Mechanism for SO2 poisoning of Cu-CHA during low temperature NH3-SCR
    Bjerregaard, Joachim D.
    Votsmeier, Martin
    Groenbeck, Henrik
    JOURNAL OF CATALYSIS, 2023, 417 : 497 - 506
  • [24] Structural control for inhibiting SO2 adsorption in porous MnCe nanowire aerogel catalysts for low-temperature NH3-SCR
    Wang, Chengzhi
    Gao, Fengyu
    Ko, Songjin
    Liu, Hengheng
    Yi, Honghong
    Tang, Xiaolong
    CHEMICAL ENGINEERING JOURNAL, 2022, 434
  • [25] Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: A collaborated experimental and DFT study
    Yu, Yaxin
    Tan, Wei
    An, Dongqi
    Wang, Xiuwen
    Liu, Annai
    Zou, Weixin
    Tang, Changjin
    Ge, Chengyan
    Tong, Qing
    Sun, Jingfang
    Dong, Lin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 281
  • [26] The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeOx microflowers for the NH3-SCR of NOx
    Wang, Xinbo
    Duan, Ruibin
    Liu, Wei
    Wang, Dawei
    Wang, Baorui
    Xu, Yurong
    Niu, Cihang
    Shi, Jian-Wen
    APPLIED SURFACE SCIENCE, 2020, 510
  • [27] The synergistic effects of cerium presence in the framework and the surface resistance to SO2 and H2O in NH3-SCR
    Fan, Yinming
    Ling, Wei
    Huang, Bichun
    Dong, Lifu
    Yu, Chenglong
    Xi, Hongxia
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 56 : 108 - 119
  • [28] Novel synthesis of reed flower-like SmMnOx catalyst with enhanced low-temperature activity and SO2 resistance for NH3-SCR
    Que, Tingting
    Duan, Kaijiao
    Koppala, Sivasankar
    Zhang, Yanfang
    He, Yungang
    Jia, Lijuan
    Liu, Tiancheng
    ENVIRONMENTAL RESEARCH, 2022, 215
  • [29] Revealing the promotional effect of Ce doping on the low-temperature activity and SO2 tolerance of Ce/FeVO4 catalysts in NH3-SCR
    Li, Beilei
    Wang, Xiaoxiang
    Wang, Yaqing
    Wang, Weijia
    Zhou, Shuguang
    Zhang, Shihan
    Li, Wei
    Li, Sujing
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (03):
  • [30] Synthesis of low-temperature NH3-SCR catalysts for MnOx with high SO2 resistance using redox-precipitation method with mixed manganese sources
    Pei, Zhenzhao
    Zhao, Haiyang
    Wang, Haipeng
    Xu, Jiaqi
    Fu, Zhuyue
    Yu, Guangxi
    Wu, Hao
    APPLIED SURFACE SCIENCE, 2025, 680