The pressureless damped Euler-Riesz equations

被引:3
作者
Choi, Young-Pil [1 ]
Jung, Jinwook [2 ]
机构
[1] Yonsei Univ, Dept Math, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Jeonbuk Natl Univ, Dept Math, 567 Baekje Daero, Jeonju Si 54896, Jeonrabug Do, South Korea
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2023年 / 40卷 / 03期
关键词
Pressureless damped Euler-Riesz system; global well-posedness; large-time behavior; fractional negative-order Sobolev spaces; interpolation inequalities; CRITICAL THRESHOLDS; POISSON EQUATIONS; LARGE FRICTION; TIME BEHAVIOR; DYNAMICS; LIMIT; CONVERGENCE; FLOWS; FIELD;
D O I
10.4171/AIHPC/48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the pressureless damped Euler-Riesz equations posed in either Rd or Td. We construct the global-in-time existence and uniqueness of classical solutions for the system around a constant background state. We also establish large-time behaviors of classical solu-tions showing the solutions towards the equilibrium as time goes to infinity. For the whole space case, we first show an algebraic decay rate of solutions under additional assumptions on the initial data compared to the existence theory. We then refine the argument to have an exponential decay rate of convergence even in the whole space. In the case of the periodic domain, without any further regularity assumptions on the initial data, we provide the exponential convergence of solutions.
引用
收藏
页码:593 / 630
页数:38
相关论文
共 50 条
  • [31] The Riemann problem for the pressureless Euler system with the Coulomb-like friction term
    Shen, Chun
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (01) : 76 - 99
  • [32] Delta shock as free piston in pressureless Euler flows
    Gao, Le
    Qu, Aifang
    Yuan, Hairong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [33] DELTA-SHOCK FOR THE NONHOMOGENEOUS PRESSURELESS EULER SYSTEM
    Li, Shiwei
    Zhao, Jianli
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (03) : 699 - 715
  • [34] QUASINEUTRAL LIMIT OF THE PRESSURELESS EULER-POISSON EQUATION FOR IONS
    Pu, Xueke
    Guo, Boling
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (02) : 245 - 273
  • [35] HYDRODYNAMIC LIMIT OF GRANULAR GASES TO PRESSURELESS EULER IN DIMENSION 1
    Jabin, Pierre-Emmanuel
    Rey, Thomas
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2017, 75 (01) : 155 - 179
  • [36] Sharp upper and lower bounds of the attractor dimension for 3D damped Euler-Bardina equations
    Ilyin, Alexei
    Kostianko, Anna
    Zelik, Sergey
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 432
  • [37] From quantum Euler-Maxwell equations to incompressible Euler equations
    Yang, Jianwei
    Ju, Zhiping
    [J]. APPLICABLE ANALYSIS, 2015, 94 (11) : 2201 - 2210
  • [38] Weak solutions for the α-Euler equations and convergence to Euler
    Busuioc, Adriana Valentina
    Iftimie, Dragos
    [J]. NONLINEARITY, 2017, 30 (12) : 4534 - 4557
  • [39] Formation of singularities to the Euler-Poisson Equations
    Wang, Yuexun
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 : 136 - 147
  • [40] Singular and Discontinuous Solutions of the Adjoint Euler Equations
    Lozano, Carlos
    [J]. AIAA JOURNAL, 2018, 56 (11) : 4437 - 4452