Cross-Project Online Just-In-Time Software Defect Prediction

被引:16
作者
Tabassum, Sadia [1 ]
Minku, Leandro L. [1 ]
Feng, Danyi [2 ]
机构
[1] Univ Birminigham, Sch Comp Sci, Birmingham B15 2TT, England
[2] Xiliu Tech, Beijing 100050, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Training; Software; Training data; Predictive models; Codes; Resource management; Open source software; Software defect prediction; cross-project learning; transfer learning; online learning; verification latency; concept drift; MACHINE;
D O I
10.1109/TSE.2022.3150153
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Cross-Project (CP) Just-In-Time Software Defect Prediction (JIT-SDP) makes use of CP data to overcome the lack of data necessary to train well performing JIT-SDP classifiers at the beginning of software projects. However, such approaches have never been investigated in realistic online learning scenarios, where Within-Project (WP) software changes naturally arrive over time and can be used to automatically update the classifiers. We provide the first investigation of when and to what extent CP data are useful for JIT-SDP in such realistic scenarios. For that, we propose three different online CP JIT-SDP approaches that can be updated with incoming CP and WP training examples over time. We also collect data on 9 proprietary software projects and use 10 open source software projects to analyse these approaches. We find that training classifiers with incoming CP+WP data can lead to absolute improvements in G-mean of up to 53.89% and up to 35.02% at the initial stage of the projects compared to classifiers using WP-only and CP-only data, respectively. Using CP+WP data was also shown to be beneficial after a large number of WP data were received. Using CP data to supplement WP data helped the classifiers to reduce or prevent large drops in predictive performance that may occur over time, leading to absolute G-Mean improvements of up to 37.35% and 48.16% compared to WP-only and CP-only data during such periods, respectively. During periods of stable predictive performance, absolute improvements were of up to 29.03% and up to 41.25% compared to WP-only and CP-only classifiers, respectively. Our results highlight the importance of using both CP and WP data together in realistic online JIT-SDP scenarios.
引用
收藏
页码:268 / 287
页数:20
相关论文
共 50 条
  • [41] Transfer Convolutional Neural Network for Cross-Project Defect Prediction
    Qiu, Shaojian
    Xu, Hao
    Deng, Jiehan
    Jiang, Siyu
    Lu, Lu
    APPLIED SCIENCES-BASEL, 2019, 9 (13):
  • [42] The Impact of Duplicate Changes on Just-in-Time Defect Prediction
    Duan, Ruifeng
    Xu, Haitao
    Fan, Yuanrui
    Yan, Meng
    IEEE TRANSACTIONS ON RELIABILITY, 2022, 71 (03) : 1294 - 1308
  • [43] Cross-Project Transfer Learning on Lightweight Code Semantic Graphs for Defect Prediction
    Fang, Dingbang
    Liu, Shaoying
    Li, Yang
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2023, 33 (07) : 1095 - 1117
  • [44] An Evaluation of Cross-Project Defect Prediction Approaches on Cross-Personalized Defect Prediction
    Amasaki, Sousuke
    Aman, Hirohisa
    Yokogawa, Tomoyuki
    PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT, PROFES 2022, 2022, 13709 : 433 - 448
  • [45] A Top-k Learning to Rank Approach to Cross-Project Software Defect Prediction
    Wang, Feng
    Huang, Jinxiao
    Ma, Yutao
    2018 25TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC 2018), 2018, : 335 - 344
  • [46] Efficient Cross-Project Software Defect Prediction Based on Federated Meta-Learning
    Chen, Haisong
    Yang, Linlin
    Wang, Aili
    ELECTRONICS, 2024, 13 (06)
  • [47] Feature Importance in the Context of Traditional and Just-In-Time Software Defect Prediction Models
    Haldar, Susmita
    Capretz, Luiz Fernando
    2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024, 2024, : 818 - 822
  • [48] Tsbagging: A Novel Cross-Project Software Defect Prediction Algorithm Based on Semisupervised Clustering
    Tang, Shiqi
    Huang, Song
    Liu, ErHu
    Yao, YongMing
    Wu, KaiShun
    Ji, Haijin
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [49] Adversarial domain adaptation for cross-project defect prediction
    Song, Hengjie
    Wu, Guobin
    Ma, Le
    Pan, Yufei
    Huang, Qingan
    Jiang, Siyu
    EMPIRICAL SOFTWARE ENGINEERING, 2023, 28 (05)
  • [50] On the time-based conclusion stability of cross-project defect prediction models
    Bangash, Abdul Ali
    Sahar, Hareem
    Hindle, Abram
    Ali, Karim
    EMPIRICAL SOFTWARE ENGINEERING, 2020, 25 (06) : 5047 - 5083