Ergodic control of McKean-Vlasov SDEs and associated Bellman equation

被引:2
作者
Bao, Xiaofan [1 ]
Tang, Shanjian [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Dept Finance & Control Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
McKean-Vlasov equations; Hamilton-Jacobi-Bellman equations; Viscosity solutions; Ergodic control; MEAN-FIELD GAMES; STOCHASTIC DIFFERENTIAL-EQUATIONS; NONLINEAR 2ND-ORDER EQUATIONS; VISCOSITY SOLUTIONS; INFINITE DIMENSIONS; TIME BEHAVIOR; SPACE; BSDES;
D O I
10.1016/j.jmaa.2023.127404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the ergodic control problem for McKean-Vlasov stochastic differential equations and prove the existence and uniqueness of the viscosity solution to the associated fully nonlinear HJB equation in a lifted sense. Furthermore, as the time horizon goes to infinity, we show that the solutions of finite-horizon time-averaging optimal control problems converge to that of the ergodic control problem. Our results require dissipativity conditions and dissipativity-like conditions on distribution variables of both drift and diffusion coefficients.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
[41]   AN ALGEBRAIC CONVERGENCE RATE FOR THE OPTIMAL CONTROL OF MCKEAN-VLASOV DYNAMICS [J].
Cardaliaguet, Pierre ;
Daudin, Samuel ;
Jackson, Joe ;
Souganidis, Panagiotis E. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (06) :3341-3369
[42]   VISCOSITY SOLUTIONS TO PARABOLIC MASTER EQUATIONS AND MCKEAN-VLASOV SDES WITH CLOSED-LOOP CONTROLS [J].
Wu, Cong ;
Zhang, Jianfeng .
ANNALS OF APPLIED PROBABILITY, 2020, 30 (02) :936-986
[43]   Infinite-dimensional regularization of McKean-Vlasov equation with a Wasserstein diffusion [J].
Marx, Victor .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04) :2315-2353
[44]   Stochastic optimal control of McKean-Vlasov equations with anticipating law [J].
Agram, Nacira .
AFRIKA MATEMATIKA, 2019, 30 (5-6) :879-901
[45]   Central limit type theorem and large deviation principle for multi-scale McKean-Vlasov SDEs [J].
Hong, Wei ;
Li, Shihu ;
Liu, Wei ;
Sun, Xiaobin .
PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (1-2) :133-201
[46]   Averaging Principle for Mckean-Vlasov SDEs Driven by Multiplicative Fractional Noise With Highly Oscillatory Drift Coefficient [J].
Pei, Bin ;
Feng, Lifang ;
Han, Min .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (09) :10215-10224
[47]   McKean-Vlasov BSDEs with Locally Monotone Coefficient [J].
Boufoussi, Brahim ;
Mouchtabih, Soufiane .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (07) :1414-1424
[48]   Multilevel and Multi-index Monte Carlo methods for the McKean-Vlasov equation [J].
Haji-Ali, Abdul-Lateef ;
Tempone, Raul .
STATISTICS AND COMPUTING, 2018, 28 (04) :923-935
[49]   Solvability of Infinite Horizon McKean-Vlasov FBSDEs in Mean Field Control Problems and Games [J].
Bayraktar, Erhan ;
Zhang, Xin .
APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (01)
[50]   A SECOND ORDER ANALYSIS OF MCKEAN-VLASOV SEMIGROUPS [J].
Arnaudon, M. ;
Del Moral, P. .
ANNALS OF APPLIED PROBABILITY, 2020, 30 (06) :2613-2664