Ergodic control of McKean-Vlasov SDEs and associated Bellman equation

被引:2
作者
Bao, Xiaofan [1 ]
Tang, Shanjian [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Dept Finance & Control Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
McKean-Vlasov equations; Hamilton-Jacobi-Bellman equations; Viscosity solutions; Ergodic control; MEAN-FIELD GAMES; STOCHASTIC DIFFERENTIAL-EQUATIONS; NONLINEAR 2ND-ORDER EQUATIONS; VISCOSITY SOLUTIONS; INFINITE DIMENSIONS; TIME BEHAVIOR; SPACE; BSDES;
D O I
10.1016/j.jmaa.2023.127404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the ergodic control problem for McKean-Vlasov stochastic differential equations and prove the existence and uniqueness of the viscosity solution to the associated fully nonlinear HJB equation in a lifted sense. Furthermore, as the time horizon goes to infinity, we show that the solutions of finite-horizon time-averaging optimal control problems converge to that of the ergodic control problem. Our results require dissipativity conditions and dissipativity-like conditions on distribution variables of both drift and diffusion coefficients.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] NUMERICAL METHOD FOR FBSDES OF MCKEAN-VLASOV TYPE
    Chassagneux, Jean-Francois
    Crisan, Dan
    Delarue, Francois
    [J]. ANNALS OF APPLIED PROBABILITY, 2019, 29 (03) : 1640 - 1684
  • [32] Discrete Time McKean-Vlasov Control Problem: A Dynamic Programming Approach
    Huyn Pham
    Wei, Xiaoli
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2016, 74 (03) : 487 - 506
  • [33] PATHWISE MCKEAN-VLASOV THEORY WITH ADDITIVE NOISE
    Coghi, Michele
    Deuschel, Jean-Dominique
    Friz, Peter K.
    Maurelli, Mario
    [J]. ANNALS OF APPLIED PROBABILITY, 2020, 30 (05) : 2355 - 2392
  • [34] LIMIT THEORY FOR CONTROLLED MCKEAN-VLASOV DYNAMICS
    Lacker, Daniel
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (03) : 1641 - 1672
  • [35] Image-dependent conditional McKean-Vlasov SDEs for measure-valued diffusion processes
    Wang, Feng-Yu
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2009 - 2045
  • [36] Existence, uniqueness and exponential ergodicity under Lyapunov conditions for McKean-Vlasov SDEs with Markovian switching
    Liu, Zhenxin
    Ma, Jun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 337 : 138 - 167
  • [37] Singular McKean-Vlasov SDEs: Well-posedness, regularities and Wang?s Harnack inequality?
    Ren, Panpan
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 156 : 291 - 311
  • [38] VISCOSITY SOLUTIONS FOR CONTROLLED MCKEAN-VLASOV JUMP-DIFFUSIONS
    Burzoni, Matteo
    Ignazio, Vincenzo
    Reppen, A. Max
    Soner, H. M.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (03) : 1676 - 1699
  • [39] AN ALGEBRAIC CONVERGENCE RATE FOR THE OPTIMAL CONTROL OF MCKEAN-VLASOV DYNAMICS
    Cardaliaguet, Pierre
    Daudin, Samuel
    Jackson, Joe
    Souganidis, Panagiotis E.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (06) : 3341 - 3369
  • [40] Multidimensional stable driven McKean-Vlasov SDEs with distributional interaction kernel: a regularization by noise perspective
    de Raynal, P. -E. Chaudru
    Jabir, J. -f.
    Menozzi, S.
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025, 13 (01): : 367 - 420