Ergodic control of McKean-Vlasov SDEs and associated Bellman equation

被引:2
作者
Bao, Xiaofan [1 ]
Tang, Shanjian [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Dept Finance & Control Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
McKean-Vlasov equations; Hamilton-Jacobi-Bellman equations; Viscosity solutions; Ergodic control; MEAN-FIELD GAMES; STOCHASTIC DIFFERENTIAL-EQUATIONS; NONLINEAR 2ND-ORDER EQUATIONS; VISCOSITY SOLUTIONS; INFINITE DIMENSIONS; TIME BEHAVIOR; SPACE; BSDES;
D O I
10.1016/j.jmaa.2023.127404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the ergodic control problem for McKean-Vlasov stochastic differential equations and prove the existence and uniqueness of the viscosity solution to the associated fully nonlinear HJB equation in a lifted sense. Furthermore, as the time horizon goes to infinity, we show that the solutions of finite-horizon time-averaging optimal control problems converge to that of the ergodic control problem. Our results require dissipativity conditions and dissipativity-like conditions on distribution variables of both drift and diffusion coefficients.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 49 条
[1]  
[Anonymous], 2008, OPTIMAL CONTROL VISC
[2]  
Arapostathis A., 2012, Ergodic control of diffusion processes, V143
[3]   On ergodic stochastic control [J].
Arisawa, M ;
Lions, PL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (11-12) :2187-2217
[4]   The mean field Schrodinger problem: ergodic behavior, entropy estimates and functional inequalities [J].
Backhoff, Julio ;
Conforti, Giovani ;
Gentil, Ivan ;
Leonard, Christian .
PROBABILITY THEORY AND RELATED FIELDS, 2020, 178 (1-2) :475-530
[5]   LINEAR-QUADRATIC N-PERSON AND MEAN-FIELD GAMES WITH ERGODIC COST [J].
Bardi, Martino ;
Priuli, Fabio S. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (05) :3022-3052
[6]   Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations [J].
Barles, G ;
Souganidis, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (06) :1311-1323
[7]   RANDOMIZED DYNAMIC PROGRAMMING PRINCIPLE AND FEYNMAN-KAC REPRESENTATION FOR OPTIMAL CONTROL OF MCKEAN-VLASOV DYNAMICS [J].
Bayraktar, Erhan ;
Cosso, Andrea ;
Pham, Huyen .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) :2115-2160
[8]   On the interpretation of the Master Equation [J].
Bensoussan, A. ;
Frehse, J. ;
Yam, S. C. P. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (07) :2093-2137
[9]  
BENSOUSSAN A, 1992, LECT NOTES CONTR INF, V177, P21
[10]  
Bourbaki N., 1966, Elements of Mathematics: General Topology