Discrepancy of Weyl Sequences (na) Perturbed by Rationally Periodic Functions

被引:0
作者
Lertchoosakul, Poj [1 ]
Meleshko, Sergey [1 ]
机构
[1] Suranaree Univ Technol, Inst Sci, Sch Math, 111 Univ Ave, A Muang 30000, Nakhon Ratchasi, Thailand
关键词
Weyl sequence; Discrepancy; Low-discrepancy sequence; Uniform distribution modulo 1; Periodic perturbation;
D O I
10.1007/s41980-023-00788-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the quantitative measure of uniform distribution of Weyl sequences perturbed by rationally periodic functions, such as (na + cos(3np/4))(n=0)(8 )where a is an irrational number. We demonstrate that the discrepancy of these sequences attains the same order of magnitude bounds for the discrepancy of classical Weyl sequences (na)(n=0)(8).
引用
收藏
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1910, Bull. Int. Acad. Polon. Sci. (Carcovie) A
[2]  
Behnke H., 1924, ABH MATH PHYS KGL, V3, P261, DOI 10.1007/BF02954628
[3]  
Blazeková O, 2011, XXIX INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, PT 1, P93
[4]  
Bohl P., 1909, J MATH, V135, P189, DOI [10.1515/crll.1909.135.189, DOI 10.1515/CRLL.1909.135.189]
[5]  
Hecke E., 1922, Abh. Math. Semin. Univ. Hambg, V1, P54, DOI DOI 10.1007/BF02940580
[6]  
Hlawka E., 1961, ANN MAT PUR APPL, V54, P325, DOI DOI 10.1007/BF02415361
[7]  
Koksma JF, 1942, Math B, V11, P7
[8]  
Niederreiter H., 1973, DIOPHANTINE APPROXIM, P129
[9]  
Ostrowski A., 1922, Abh. Math. Semin. Univ. Hamb., P77, DOI [10.1007/BF02940581, DOI 10.1007/BF02940581]
[10]   Continued fractions with bounded partial quotients [J].
Stambul, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :981-985