Fractal interpolation function on products of the Sierpinski gaskets

被引:12
作者
Prasad, S. A. [1 ]
Verma, S. [2 ]
机构
[1] Indian Inst Technol Tirupati, Dept Math & Stat, Tirupati 517506, India
[2] Indian Inst Informat Technol Allahabad, Dept Appl Sci, Prayagraj 211015, India
关键词
Fractal dimension; Fractal interpolation; Sierpinski gasket; Holder continuous; Smoothness;
D O I
10.1016/j.chaos.2022.112988
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we aim to construct fractal interpolation functions (FIFs) on the product of two Sierpinski gaskets. Further, we collect some results regarding smoothness of the constructed FIFs. We prove, in particular, that the FIFs are Holder functions under specific conditions. In the final section, we obtain some bounds on the fractal dimensions of FIFs.
引用
收藏
页数:6
相关论文
共 41 条
  • [1] Agrawal V, 2022, RESULTS MATH, V77, DOI 10.1007/s00025-021-01565-5
  • [2] Agrawal V, 2021, EUR PHYS J-SPEC TOP, V230, P3781, DOI 10.1140/epjs/s11734-021-00304-9
  • [3] Baldo S, 1994, MONTR P
  • [4] HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS
    BARNSLEY, MF
    ELTON, J
    HARDIN, D
    MASSOPUST, P
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) : 1218 - 1242
  • [5] Barnsley MF., 1988, FRACTALS EVERYWHERE
  • [6] Partial differential equations on products of Sierpinski gaskets
    Bockelman, Brian
    Strichartz, Robert S.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) : 1361 - 1375
  • [7] Fractal interpolation on the Sierpinski Gasket
    Celik, Derya
    Kocak, Sahin
    Ozdemir, Yunus
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 343 - 347
  • [8] Generalized cubic spline fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) : 655 - 676
  • [9] Chand A.K.B., 2007, Int. J. Non-Linear Sci., V3, P15
  • [10] THE CALCULUS OF BIVARIATE FRACTAL INTERPOLATION SURFACES
    Chandra, Subhash
    Abbas, Syed
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (03)