Factorisation de la cohomologie etalep-adique de la tour de Drinfeld

被引:3
作者
Colmez, Pierre [1 ]
Dospinescu, Gabriel [2 ]
Niziol, Wieslawa [1 ]
机构
[1] Sorbonne Univ, CNRS, IMJ, PRG, 4 Pl Jussieu, F-75005 Paris, France
[2] Ecole Normale Super Lyon, CNRS, UMPA, 46 Allee Italie, F-69007 Lyon, France
来源
FORUM OF MATHEMATICS PI | 2023年 / 11卷
关键词
11Sxx; 11F85; IRREDUCIBLE MODULAR-REPRESENTATIONS; MOD P REPRESENTATIONS; GL(2); ALGEBRAS;
D O I
10.1017/fmp.2023.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Resume For a finite extension F of , Drinfeld defined a tower of coverings of (the Drinfeld half-plane). For , we describe a decomposition of the p-adic geometric etale cohomology of this tower analogous to Emerton's decomposition of completed cohomology of the tower of modular curves. A crucial ingredient is a finiteness theorem for the arithmetic etale cohomology modulo p whose proof uses Scholze's functor, global ingredients, and a computation of nearby cycles which makes it possible to prove that this cohomology has finite presentation. This last result holds for all F; for , it implies that the representations of obtained from the cohomology of the Drinfeld tower are not admissible contrary to the case .
引用
收藏
页数:62
相关论文
共 71 条
[11]  
Borel A., 1980, Continuous cohomology, discrete subgroups, and representations of reductive groups, V94
[12]   On some modular representations and p-adics of GL2(Qp):: I [J].
Breuil, C .
COMPOSITIO MATHEMATICA, 2003, 138 (02) :165-188
[13]  
Breuil C., 2012, MEMOIRS AM MATH SOC, V216
[14]   Patching and the p-adic local Langlands correspondence [J].
Caraiani, Ana ;
Emerton, Matthew ;
Gee, Toby ;
Geraghty, David ;
Paskunas, Vytautas ;
Shin, Sug Woo .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2016, 4 (02) :197-287
[15]   Construction of semi-stable p-adic representations [J].
Colmez, P ;
Fontaine, JM .
INVENTIONES MATHEMATICAE, 2000, 140 (01) :1-43
[16]  
Colmez P., 2010, ASTERISQUE, V330, P281
[17]   Local p-adic Langlands correspondence and Kisin rings [J].
Colmez, Pierre ;
Dospinescu, Gabriel ;
Niziol, Wieslawa .
ACTA ARITHMETICA, 2023, 208 (02) :101-126
[18]  
Colmez P, 2022, CAMB J MATH, V10, P511
[19]   COHOMOLOGIE p-ADIQUE DE LA TOUR DE DRINFELD: LE CAS DE LA DIMENSION [J].
Colmez, Pierre ;
Dospinescu, Gabriel ;
Niziol, Wieslawa .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 33 (02) :311-362
[20]   Cohomology of p-adic Stein spaces [J].
Colmez, Pierre ;
Dospinescu, Gabriel ;
Niziol, Wieslawa .
INVENTIONES MATHEMATICAE, 2020, 219 (03) :873-985