The Modified Korteweg-de Vries System on the Half-Line

被引:5
|
作者
Himonas, A. Alexandrou [1 ]
Yan, Fangchi [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] State Univ, Virginia Polytech Inst, Dept Math, Blacksburg, VA 24061 USA
关键词
Modified Korteweg-de Vries system; Initial-boundary value problems; Fokas unified transform method; Well-posedness in Sobolev spaces; Linear and trilinear estimates in Bourgain spaces; BOUNDARY-VALUE-PROBLEM; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATION; MODIFIED KDV; ILL-POSEDNESS; TRANSFORM METHOD; COUPLED SYSTEM; REGULARITY; MKDV; DISPERSION;
D O I
10.1007/s10884-023-10271-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial-boundary value problem (ibvp) for a coupled system of modified Korteweg-de Vries (mKdV) equations depending on a parameter a is studied on the half-line. It is shown that this system is well-posed for initial data (u(0), v(0))(x) in spatial Sobolev spaces H-s (0,infinity) x H-s (0,infinity), s > 1/4, and boundary data (g(0), h(0))(t) in the temporal Sobolev spaces suggested by the time regularity of the Cauchy problem for the corresponding linear problem. First, linear estimates in Bourgain spaces X-s,X-b for 0 < b < 1/2 are derived by utilizing the Fokas solution formula of the ibvp for the forced linear system. Then, using these and the needed trilinear estimates in X-s,X-b spaces, it is shown that the iteration map defined by the Fokas solution formula is a contraction in an appropriate solution space. Finally, via a counterexample to trilinear estimates, the criticality of s = 1/4 for well-posedness is established.
引用
收藏
页码:1 / 54
页数:54
相关论文
共 50 条
  • [21] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [22] Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [23] Unconditional uniqueness for the modified Korteweg-de Vries equation on the line
    Molinet, Luc
    Pilod, Didier
    Vento, Stephan
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (04) : 1563 - 1608
  • [24] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [25] MODIFIED KORTEWEG-DE VRIES EQUATION AS A SYSTEM WITH BENIGN GHOSTS
    Smilga, Andrei
    ACTA POLYTECHNICA, 2022, 62 (01) : 190 - 196
  • [26] Superregular breathers in a complex modified Korteweg-de Vries system
    Liu, Chong
    Ren, Yang
    Yang, Zhan-Ying
    Yang, Wen-Li
    CHAOS, 2017, 27 (08)
  • [27] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [28] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [29] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [30] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)