pH-Sensitive Degradable Oxalic Acid Crosslinked Hyperbranched Polyglycerol Hydrogel for Controlled Drug Release

被引:5
|
作者
de Campos, Bianca Andrade [1 ]
da Silva, Natalia Cristina Borges [1 ]
Moda, Lucas Szmgel [1 ]
Vidinha, Pedro [2 ]
Maia-Obi, Ligia Passos [1 ]
机构
[1] Fed Univ ABC, Ctr Engn Modelling & Appl Social Sci, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil
[2] Univ Sao Paulo, Inst Chem, Dept Fundamental Chem, Ave Prof Lineu Prestes 748, BR-05508000 Sao Paulo, SP, Brazil
关键词
pH-sensitive hydrogel; hyperbranched polyglycerol; hydrogel formation; controlled release; RESPONSIVE HYDROGELS; DELIVERY; IBUPROFEN; CHITOSAN; BIOCOMPATIBILITY; WATER; DISSOLUTION; MORPHOLOGY; HYDROLYSIS; POLYMERS;
D O I
10.3390/polym15071795
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
pH-sensitive degradable hydrogels are smart materials that can cleave covalent bonds upon pH variation, leading to their degradation. Their development led to many applications for drug delivery, where drugs can be released in a pH-dependent manner. Crosslinking hyperbranched polyglycerol (HPG), a biocompatible building block bearing high end-group functionality, using oxalic acid (OA), a diacid that can be synthesized from CO2 and form highly activated ester bonds, can generate this type of smart hydrogel. Aiming to understand the process of developing this novel material and its drug release for oral administration, its formation was studied by varying reactant stoichiometry, concentration and cure procedure and temperature; it was characterized regarding gel percent (%gel), swelling degree (%S), FTIR and thermal behavior; impregnated using ibuprofen, as a model drug, and a release study was carried out at pH 2 and 7. Hydrogel formation was evidenced by its insolubility, FTIR spectra and an increase in T-d and T-g; a pre-cure step was shown to be crucial for its formation and an increase in the concentration of the reactants led to higher %gel and lower %S. The impregnation resulted in a matrix-encapsulated system; and the ibuprofen release was negligible at pH 2 but completed at pH 7 due to the hydrolysis of the matrix. A pH-sensitive degradable HPG-OA hydrogel was obtained and it can largely be beneficial in controlled drug release applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Novel pH-Sensitive Lactic Acid Oligomer Grafted Chitosan Hydrogel for Controlled Drug Release
    Song, Rui
    Liu, Fujun
    Yang, Jie
    Yao, Lu
    He, Linghao
    Qin, Bing
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2011, 50 (07): : 1260 - 1269
  • [2] New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug
    Colinet, I.
    Dulong, V.
    Mocanu, G.
    Picton, L.
    Le Cerf, D.
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2009, 73 (03) : 345 - 350
  • [3] Preparation of Fluorescently Labeled pH-Sensitive Micelles for Controlled Drug Release
    Hao Wei-Ju
    Zhang Jun-Qi
    Shang Ya-Zhuo
    Xu Shou-Hong
    Liu Hong-Lai
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (10) : 2628 - 2635
  • [4] Controlled release of aspirin from pH-sensitive chitosan/poly(vinyl alcohol) hydrogel
    Islam, Atif
    Yasin, Tariq
    Bano, Ijaz
    Riaz, Muhammad
    JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 124 (05) : 4184 - 4192
  • [5] A pH-Sensitive Hydrogel with Hydrophobic Association for Controlled Release of Poorly Water-Soluble Drugs
    Ma, Jing
    Liu, Xinxing
    Yang, Zhiwen
    Tong, Zhen
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2009, 46 (08): : 816 - 820
  • [6] Effect of chitosan coating on the swelling and controlled release of a poorly water-soluble drug from an amphiphilic and pH-sensitive hydrogel
    Colinet, I.
    Dulong, V.
    Mocanu, G.
    Picton, L.
    Le Cerf, D.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2010, 47 (02) : 120 - 125
  • [7] KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release
    Xu, Qi
    Huang, Weijuan
    Jiang, Linbin
    Lei, Zhanjun
    Li, Xueyong
    Deng, Hongbing
    CARBOHYDRATE POLYMERS, 2013, 97 (02) : 565 - 570
  • [8] Preparation of a novel pH-sensitive hydrogel based on acrylic acid and polyhedral oligomeric silsesquioxane for controlled drug release of theophylline
    Huang, Deyong
    Zhang, Chunling
    Yu, Kaifeng
    Wang, Tingting
    Mu, Jianxin
    POLYMER BULLETIN, 2014, 71 (08) : 1877 - 1889
  • [9] Preparation of Covalently Crosslinked Sodium Alginate/Hydroxypropyl Methylcellulose pH-Sensitive Microspheres for Controlled Drug Release
    Song, Pingping
    Wu, Yuying
    Zhang, Xueming
    Yan, Zhongya
    Wang, Meng
    Xu, Feng
    BIORESOURCES, 2018, 13 (04): : 8614 - 8628
  • [10] Swelling and Controlled Release of Tramadol Hydrochloride from a pH-Sensitive Hydrogel
    Hussain, Talib
    Ranjha, Nazar Muhammad
    Shahzad, Yasser
    DESIGNED MONOMERS AND POLYMERS, 2011, 14 (03) : 233 - 249