Van Der Waals Metal Contacts for Electronic and Optoelectronic Devices

被引:2
|
作者
Lee, Joo-Hong [1 ,2 ]
Choi, Seung-Gu [1 ,2 ]
Lee, Jin-Wook [1 ,2 ,3 ]
机构
[1] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Dept Nanoengn, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Dept Nanoengn, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, SKKU Inst Energy Sci & Technol SIEST, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
van der Waals interaction; metal contact; physical vapor deposition; thin film electronics; Fermi-level pinning; HEAT-CAPACITY; INTRINSIC DEFECTS; SOLAR-CELLS; LEAD; 1ST-PRINCIPLES; CONDUCTIVITY; TRANSISTORS; MOLYBDENUM; GRAPHENE;
D O I
10.1021/acsaelm.2c01789
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the fabrication of thin-film electronics, conventional physical vapor deposition (PVD) processes have been widely used to form metal contacts on various thin films. However, the PVD process, involving thermally activated high-energy metal atoms, damages the underlying thin films, severely deteriorating the performance and stability of the device. The van der Waals (vdW) metal-contact approach has recently emerged to avoid this issue. By transferring predeposited metal contacts using vdW interactions, atomically sharp and electronically clean heterointerfaces can be formed without generating unintended defects. In this article, we review the fundamentals, processes, and various applications of the vdW metal-integration approach. The classical theory of vdW interactions is first reviewed, followed by the introduction of various approaches for constructing vdW metal contacts on thin films. Subsequently, the influence of contact configuration on the performance of various applications is summarized. Finally, the remaining challenges and prospects are discussed for the practical usage and versatile application of vdW metal contacts for next-generation electronic devices.
引用
收藏
页码:1903 / 1925
页数:23
相关论文
共 50 条
  • [31] Memory Devices Based on Van der Waals Heterostructures
    Liu, Chunsen
    Zhou, Peng
    ACS MATERIALS LETTERS, 2020, 2 (09): : 1101 - 1105
  • [32] 2D Van der Waals Sliding Ferroelectrics Toward Novel Electronic Devices
    Wang, Chunyan
    Zhang, Yaxue
    Zhang, Dachuan
    Sun, Yu
    Zhang, Tao
    Li, Jing
    SMALL, 2025, 21 (08)
  • [33] Black Phosphorus-IGZO van der Waals Diode with Low-Resistivity Metal Contacts
    Dastgeer, Ghulam
    Khan, Muhammad Farooq
    Cha, Janghwan
    Afzal, Amir Muhammad
    Min, Keun Hong
    Ko, Byung Min
    Liu, Hailiang
    Hong, Suklyun
    Eom, Jonghwa
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (11) : 10959 - 10966
  • [34] Van der Waals Metal-Semiconductor Contacts for High-Performance Polymer FieldEffect Transistors
    Lai, Xilin
    Zhao, Chunyan
    Huang, Ru
    He, Ming
    2023 7TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM, 2023,
  • [35] Enhanced Thermal Transport across Self-Interfacing van der Waals Contacts in Flexible Thermal Devices
    Seong, Minho
    Hwang, Insol
    Park, Seongjin
    Jang, Hyejin
    Choi, Geonjun
    Kim, Jaeil
    Kim, Shin-Kwan
    Kim, Gun-Ho
    Yeo, Junyeob
    Jeong, Hoon Eui
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (48)
  • [36] Tunable Schottky contacts in the antimonene/graphene van der Waals heterostructures
    Li, Wei
    Wang, Xinlian
    Dai, Xianqi
    SOLID STATE COMMUNICATIONS, 2017, 254 : 37 - 41
  • [37] Magnetic frustration in a van der Waals metal CeSiI
    Okuma, Ryutaro
    Ritter, Clemens
    Nilsen, Goran J.
    Okada, Yoshinori
    PHYSICAL REVIEW MATERIALS, 2021, 5 (12)
  • [38] Amorphous Ferromagnetic Metal in van der Waals Materials
    Zhang, Siyue
    Harii, Kazuya
    Yokouchi, Tomoyuki
    Okayasu, Satoru
    Shiomi, Yuki
    ADVANCED ELECTRONIC MATERIALS, 2024, 10 (02)
  • [39] van der Waals Metallic Transition Metal Dichalcogenides
    Han, Gang Hee
    Dinh Loc Duong
    Keum, Dong Hoon
    Yun, Seok Joon
    Lee, Young Hee
    CHEMICAL REVIEWS, 2018, 118 (13) : 6297 - 6336
  • [40] Light from van der Waals quantum tunneling devices
    Parzefall, Markus
    Szabo, Aron
    Taniguchi, Takashi
    Watanabe, Kenji
    Luisier, Mathieu
    Novotny, Lukas
    NATURE COMMUNICATIONS, 2019, 10 (1)