Effect of butachlor on Microcystis aeruginosa: Cellular and molecular mechanisms of toxicity

被引:21
|
作者
Yu, Jing [1 ,2 ]
Zhu, Hui [1 ,3 ]
Wang, Heli [2 ,4 ]
Shutes, Brian [5 ]
Niu, Tingting [1 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Wetland Ecol & Environm, Changchun 130102, Peoples R China
[2] China Univ Geosci Beijing, Sch Water Resources & Environm, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Northeast Inst Geog & Agroecol, State Key Lab Black Soils Conservat & Utilizat, Changchun 130102, Peoples R China
[4] Suzhou Univ Sci & Technol, Jiangsu Collaborat Innovat Ctr Technol & Mat Water, Suzhou 215009, Jiangsu, Peoples R China
[5] Middlesex Univ, Dept Nat Sci, London NW4 4BT, England
基金
中国国家自然科学基金;
关键词
Microcystis aeruginosa; Butachlor; Microcystin-LR; Photosynthesis; Transcriptome; SCENEDESMUS-OBLIQUUS; OXIDATIVE STRESS; CYANOBACTERIUM; GROWTH; DISRUPTION; PESTICIDES; CHLORELLA; EXPOSURE; ATRAZINE; RELEASE;
D O I
10.1016/j.jhazmat.2023.131042
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid development of agriculture increases the release of butachlor into aquatic environments. As a domi-nant species causing cyanobacterial blooms, Microcystis aeruginosa (M. aeruginosa) can produce microcystin and poses threats to aquatic ecosystems and human health. However, the impact of butachlor on M. aeruginosa re-mains unclarified. Therefore, the physiochemical responses of M. aeruginosa to butachlor were investigated, and the relevant underlying molecular mechanism was highlighted. There were no significant changes (P > 0.05) in the growth and physiology of M. aeruginosa at the low concentrations of butachlor (0-0.1 mg/L), which evi-denced a high level of butachlor tolerance in Microcystis aeruginosa. For the high concentrations of butachlor (4-30 mg/L), the inhibition of photosynthetic activity, disruption of cell ultrastructure, and oxidative stress were dominant toxic effects on M. aeruginosa. Additionally, the impaired cellular integrity and lipid peroxidation may be attributed to the substantial elevations of extracellular microcystin-LR concentration. Downregulation of genes associated with photosynthesis, energy metabolism, and oxidative stress was inferred to be responsible for the growth suppression of M. aeruginosa in 30 mg/L butachlor treatment. The upregulation of gene sets involved in nitrogen metabolism may illustrate the specific effort to sustain the steady concentration of intracellular microcystin-LR. These findings dissect the response mechanism of M. aeruginosa to butachlor toxicity and provide valuable reference for the evaluation of potential risk caused by butachlor in aquatic environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Metabolomic analysis reveals the toxicity mechanisms of bisphenol A on the Microcystis aeruginosa under different phosphorus levels
    Yang, Meng
    Du, Daolin
    Zhu, Fang
    Wang, Xiangrong
    ENVIRONMENTAL POLLUTION, 2024, 342
  • [42] Toxicity Reduction of Microcystis Aeruginosa Using Microbubble Ozonation
    Nam, Gwiwoong
    Jeon, Min-Seo
    Choi, Yoon-E
    Jung, Jinho
    OZONE-SCIENCE & ENGINEERING, 2023, 45 (02) : 182 - 190
  • [43] Cadmium and Chromium Toxicity to Pseudokirchneriella subcapitata and Microcystis aeruginosa
    Rodgher, Suzelei
    Gaeta Espindola, Evaldo Luiz
    Fonseca Simoes, Fernanda Cristina
    Tonietto, Alessandra Emanuele
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2012, 55 (01) : 161 - 169
  • [44] The secondary outbreak risk and mechanisms of Microcystis aeruginosa after H 2 O 2 treatment
    Luo, Chen
    Chen, Chenlan
    Xian, Xuanxuan
    Cai, Wei-Feng
    Yu, Xin
    Ye, Chengsong
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 470
  • [45] Metabolic profiling of silver nanoparticle toxicity in Microcystis aeruginosa
    Zhang, Ji Lai
    Zhou, Zhi Peng
    Pei, Ying
    Xiang, Qian Qian
    Chang, Xue Xiu
    Ling, Jian
    Shea, Damian
    Chen, Li Qiang
    ENVIRONMENTAL SCIENCE-NANO, 2018, 5 (11) : 2519 - 2530
  • [46] Physiological and molecular responses to calcium supplementation in Microcystis aeruginosa (Cyanobacteria)
    Shi, J-Q
    Wu, Z-X
    Song, L-R
    NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER RESEARCH, 2013, 47 (01) : 51 - 61
  • [47] Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical
    Yang, Jia
    Deng, Xiru
    Xian, Qiming
    Qian, Xin
    Li, Aimin
    HYDROBIOLOGIA, 2014, 727 (01) : 65 - 73
  • [48] Metabolic activity and membrane integrity changes in Microcystis aeruginosa - new findings on hydrogen peroxide toxicity in cyanobacteria
    Mikula, Premysl
    Zezulka, Stepan
    Jancula, Daniel
    Marsalek, Blahoslav
    EUROPEAN JOURNAL OF PHYCOLOGY, 2012, 47 (03) : 195 - 206
  • [49] Effect of urea on growth and microcystins production of Microcystis aeruginosa
    Wu, Xuanhao
    Yan, Yangwei
    Wang, Pinfei
    Ni, Lanqi
    Gao, Jiayi
    Dai, Ruihua
    BIORESOURCE TECHNOLOGY, 2015, 181 : 72 - 77
  • [50] Effect of nitrite on growth and microcystins production of Microcystis aeruginosa PCC7806
    Chen, Weimin
    Liu, Hao
    Zhang, Qingmin
    Dai, Shugui
    JOURNAL OF APPLIED PHYCOLOGY, 2011, 23 (04) : 665 - 671