Effect of butachlor on Microcystis aeruginosa: Cellular and molecular mechanisms of toxicity

被引:24
作者
Yu, Jing [1 ,2 ]
Zhu, Hui [1 ,3 ]
Wang, Heli [2 ,4 ]
Shutes, Brian [5 ]
Niu, Tingting [1 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Wetland Ecol & Environm, Changchun 130102, Peoples R China
[2] China Univ Geosci Beijing, Sch Water Resources & Environm, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Northeast Inst Geog & Agroecol, State Key Lab Black Soils Conservat & Utilizat, Changchun 130102, Peoples R China
[4] Suzhou Univ Sci & Technol, Jiangsu Collaborat Innovat Ctr Technol & Mat Water, Suzhou 215009, Jiangsu, Peoples R China
[5] Middlesex Univ, Dept Nat Sci, London NW4 4BT, England
基金
中国国家自然科学基金;
关键词
Microcystis aeruginosa; Butachlor; Microcystin-LR; Photosynthesis; Transcriptome; SCENEDESMUS-OBLIQUUS; OXIDATIVE STRESS; CYANOBACTERIUM; GROWTH; DISRUPTION; PESTICIDES; CHLORELLA; EXPOSURE; ATRAZINE; RELEASE;
D O I
10.1016/j.jhazmat.2023.131042
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid development of agriculture increases the release of butachlor into aquatic environments. As a domi-nant species causing cyanobacterial blooms, Microcystis aeruginosa (M. aeruginosa) can produce microcystin and poses threats to aquatic ecosystems and human health. However, the impact of butachlor on M. aeruginosa re-mains unclarified. Therefore, the physiochemical responses of M. aeruginosa to butachlor were investigated, and the relevant underlying molecular mechanism was highlighted. There were no significant changes (P > 0.05) in the growth and physiology of M. aeruginosa at the low concentrations of butachlor (0-0.1 mg/L), which evi-denced a high level of butachlor tolerance in Microcystis aeruginosa. For the high concentrations of butachlor (4-30 mg/L), the inhibition of photosynthetic activity, disruption of cell ultrastructure, and oxidative stress were dominant toxic effects on M. aeruginosa. Additionally, the impaired cellular integrity and lipid peroxidation may be attributed to the substantial elevations of extracellular microcystin-LR concentration. Downregulation of genes associated with photosynthesis, energy metabolism, and oxidative stress was inferred to be responsible for the growth suppression of M. aeruginosa in 30 mg/L butachlor treatment. The upregulation of gene sets involved in nitrogen metabolism may illustrate the specific effort to sustain the steady concentration of intracellular microcystin-LR. These findings dissect the response mechanism of M. aeruginosa to butachlor toxicity and provide valuable reference for the evaluation of potential risk caused by butachlor in aquatic environments.
引用
收藏
页数:13
相关论文
共 65 条
[11]   Toxicity of biocides to native cyanobacteria at different rice crop stages in wetland paddy field [J].
Dash, Nalinaxya Prasad ;
Kaushik, Manish Singh ;
Kumar, Ajay ;
Abraham, Gerard ;
Singh, Pawan Kumar .
JOURNAL OF APPLIED PHYCOLOGY, 2018, 30 (01) :483-493
[12]   The genetic and ecophysiological diversity of Microcystis [J].
Dick, Gregory J. ;
Duhaime, Melissa B. ;
Evans, Jacob T. ;
Errera, Reagan M. ;
Godwin, Casey M. ;
Kharbush, Jenan J. ;
Nitschky, Helena S. ;
Powers, McKenzie A. ;
Vanderploeg, Henry A. ;
Schmidt, Kathryn C. ;
Smith, Derek J. ;
Yancey, Colleen E. ;
Zwiers, Claire C. ;
Denef, Vincent J. .
ENVIRONMENTAL MICROBIOLOGY, 2021, 23 (12) :7278-7313
[13]   Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling [J].
Erdrich, Philipp ;
Knoop, Henning ;
Steuer, Ralf ;
Klamt, Steffen .
MICROBIAL CELL FACTORIES, 2014, 13
[14]   Growth inhibition and oxidative stress caused by four ionic liquids in Scenedesmus obliquus: Role of cations and anions [J].
Fan, Huiyang ;
Liu, Huijun ;
Dong, Ying ;
Chen, Chonglei ;
Wang, Zongwei ;
Guo, Jiayun ;
Du, Shaoting .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 651 :570-579
[15]   Nanoplastics Promote Microcystin Synthesis and Release from Cyanobacterial Microcystis aeruginosa [J].
Feng, Li-Juan ;
Sun, Xiao-Dong ;
Zhu, Fan-Ping ;
Feng, Yue ;
Duan, Jian-Lu ;
Xiao, Fu ;
Li, Xiang-Yu ;
Shi, Yi ;
Wang, Qian ;
Sun, Jia-Wen ;
Liu, Xiao-Yu ;
Liu, Jia-Qi ;
Zhou, Lin-Lin ;
Wang, Shu-Guang ;
Ding, Zhaojun ;
Tian, Huiyu ;
Galloway, Tamara Susan ;
Yuan, Xian-Zheng .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (06) :3386-3394
[16]   Effect of Microcystis aeruginosa-Associated Microcystin-LR on the Survival of 2 Life Stages of Freshwater Mussel (Lampsilis siliquoidea) [J].
Gene, Samantha May ;
Shahmohamadloo, Rene Sahba ;
Ortiz, Xavier ;
Prosser, Ryan S. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2019, 38 (10) :2137-2144
[17]   Effects of Hydrogen Peroxide on Cyanobacterium Microcystis aeruginosa in the Presence of Nanoplastics [J].
Guo, Yawen ;
O'Brien, Anna M. ;
Lins, Tiago F. ;
Shahmohamadloo, Rene Sahba ;
Almirall, Xavier Ortiz ;
Rochman, Chelsea M. ;
Sinton, David .
ACS ES&T WATER, 2021, 1 (07) :1596-1607
[18]   Transcriptomic Responses in the Bloom-Forming Cyanobacterium Microcystis Induced during Exposure to Zooplankton [J].
Harke, Matthew J. ;
Jankowiak, Jennifer G. ;
Morrell, Brooke K. ;
Gobler, Christopher J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2017, 83 (05)
[19]   A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. [J].
Harke, Matthew J. ;
Steffen, Morgan M. ;
Gobler, Christopher J. ;
Otten, Timothy G. ;
Wilhelm, Steven W. ;
Wood, Susanna A. ;
Paerl, Hans W. .
HARMFUL ALGAE, 2016, 54 :4-20
[20]   Acute toxicity of butachlor and atrazine to freshwater green alga Scenedesmus obliquus and cladoceran Daphnia carinata [J].
He, Hongzhi ;
Yu, Jing ;
Chen, Guikui ;
Li, Wenyang ;
He, Jinbo ;
Li, Huashou .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2012, 80 :91-96