Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions

被引:14
|
作者
Alsoboh, Abdullah [1 ]
Amourah, Ala [2 ]
Darus, Maslina [3 ]
Sharefeen, Rami Issa Al [4 ]
机构
[1] Umm Al Qura Univ, Al Leith Univ Coll, Dept Math, Mecca 24382, Saudi Arabia
[2] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 21110, Jordan
[3] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[4] Rabdan Acad, Fac Resilience, Abu Dhabi 22401, U Arab Emirates
关键词
neutrosophic q-Poisson distribution; q-gegenbauer polynomials; bi-univalent functions; analytic functions; Fekete-Szego problem; q-calculus; FEKETE-SZEGO INEQUALITY; GEGENBAUER POLYNOMIALS; FUNCTIONS SUBORDINATE;
D O I
10.3390/math11040868
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the generalization of the neutrosophic q-Poisson distribution series, we introduce a new subclass of analytic and bi-univalent functions defined in the open unit disk. We then apply the q-Gegenbauer polynomials to investigate the estimates for the Taylor coefficients and Fekete-Szego type inequalities of the functions belonging to this new subclass. In addition, we consider several corollaries and the consequences of the results presented in this paper. The neutrosophic q-Poisson distribution is expected to be significant in a number of areas of mathematics, science, and technology.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] NEW SUBCLASS OF BI-UNIVALENT FUNCTIONS BY (p, q)-DERIVATIVE OPERATOR
    Motamednezhad, Ahmad
    Salehian, Safa
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (02): : 381 - 390
  • [32] COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS
    Altinkaya, Sahsene
    Yalcin, Sibel
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, 6 (02): : 180 - 185
  • [33] A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions
    Amourah, Ala
    Alsoboh, Abdullah
    Ogilat, Osama
    Gharib, Gharib Mousa
    Saadeh, Rania
    Al Soudi, Maha
    AXIOMS, 2023, 12 (02)
  • [34] Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma–Minda type
    H. M. Srivastava
    S. Gaboury
    F. Ghanim
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 1157 - 1168
  • [35] Initial Bounds for a Subclass of Analytic and Bi-Univalent Functions Defined by Chebyshev Polynomials and q-Differential Operator
    Dong GUO
    En AO
    Huo TANG
    Liangpeng XIONG
    Journal of Mathematical Research with Applications, 2019, 39 (05) : 506 - 516
  • [36] Coefficient Estimates for a New Subclass of Analytic and Bi-Univalent Functions by Hadamard Product
    Adegani, Ebrahim Analouei
    Zireh, Ahmad
    Jafari, Mostafa
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (02): : 87 - 104
  • [37] Coefficient Estimates for a Subclass of Bi-Univalent Functions Defined by q-Derivative Operator
    Elhaddad, Suhila
    Darus, Maslina
    MATHEMATICS, 2020, 8 (03)
  • [38] Investigating New Subclasses of Bi-Univalent Functions Associated with q-Pascal Distribution Series Using the Subordination Principle
    Alsoboh, Abdullah
    Amourah, Ala
    Darus, Maslina
    Rudder, Carla Amoi
    SYMMETRY-BASEL, 2023, 15 (05):
  • [39] A SUBCLASS OF PSEUDO-TYPE MEROMORPHIC BI-UNIVALENT FUNCTIONS
    Alamoush, Adnan Ghazy
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 31 - 38
  • [40] Faber Polynomial Coefficient Estimates on a Subclass of Bi-Univalent Functions
    Xiaoyuan WANG
    Zhiren WANG
    Li YIN
    Journal of Mathematical Research with Applications, 2018, 38 (05) : 465 - 470