Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions

被引:19
作者
Alsoboh, Abdullah [1 ]
Amourah, Ala [2 ]
Darus, Maslina [3 ]
Sharefeen, Rami Issa Al [4 ]
机构
[1] Umm Al Qura Univ, Al Leith Univ Coll, Dept Math, Mecca 24382, Saudi Arabia
[2] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 21110, Jordan
[3] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[4] Rabdan Acad, Fac Resilience, Abu Dhabi 22401, U Arab Emirates
关键词
neutrosophic q-Poisson distribution; q-gegenbauer polynomials; bi-univalent functions; analytic functions; Fekete-Szego problem; q-calculus; FEKETE-SZEGO INEQUALITY; GEGENBAUER POLYNOMIALS; FUNCTIONS SUBORDINATE;
D O I
10.3390/math11040868
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the generalization of the neutrosophic q-Poisson distribution series, we introduce a new subclass of analytic and bi-univalent functions defined in the open unit disk. We then apply the q-Gegenbauer polynomials to investigate the estimates for the Taylor coefficients and Fekete-Szego type inequalities of the functions belonging to this new subclass. In addition, we consider several corollaries and the consequences of the results presented in this paper. The neutrosophic q-Poisson distribution is expected to be significant in a number of areas of mathematics, science, and technology.
引用
收藏
页数:10
相关论文
共 32 条
[1]   Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator [J].
Aldawish, Ibtisam ;
Al-Hawary, Tariq ;
Frasin, B. A. .
MATHEMATICS, 2020, 8 (05)
[2]  
Alhabib R, 2018, NEUTROSOPHIC SETS SY, V22, P30
[3]   On Fekete-Szego Problems for Certain Subclasses of Analytic Functions Defined by Differential Operator Involving q-Ruscheweyh Operator [J].
Alsoboh, Abdullah ;
Darus, Maslina .
JOURNAL OF FUNCTION SPACES, 2020, 2020
[4]  
Amourah A., 2021, Palestine Journal of Mathematics, V10, P625
[5]  
Amourah A., 2023, AXIOMS, V12, DOI [10.3390/axioms12020128, DOI 10.3390/AXIOMS12020128]
[6]   An Application of Miller-Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials [J].
Amourah, Ala ;
Frasin, Basem Aref ;
Seoudy, Tamer M. .
MATHEMATICS, 2022, 10 (14)
[7]   Fekete-Szego Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials [J].
Amourah, Ala ;
Frasin, Basem Aref ;
Abdeljawad, Thabet .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[8]  
Askey R, 1983, GENERALIZATION ULTRA
[9]  
Bateman H., 1953, Higher Transcendental Functions. Vol. II, VI
[10]  
Bulut S., 2017, J. Fract. Calc. Appl., V8, P32