(ω, Q)-periodic mild solutions for a class of semilinear abstract differential equations and applications to Hopfield-type neural network model

被引:0
作者
Alvarez, E. [1 ]
Diaz, S. [2 ]
Grau, R. [1 ]
机构
[1] Univ Norte, Dept Math & Estadist, Barranquilla, Colombia
[2] Univ Costa, Dept Ciencias Nat & Exactas, Barranquilla, Colombia
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Semilinear Cauchy problem; Hopfield-type; Affine-periodic functions; Q )-periodic solutions; STABILITY; CONVERGENCE; DYNAMICS; SYSTEMS;
D O I
10.1007/s00033-023-01943-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence and uniqueness of (omega, Q)-periodic mild solutions for the following problem x ' (t) = Ax(t) + f(t, x(t)), t is an element of R, on a Banach space X. Here, A is a closed linear operator which generates an exponentially stable C0-semigroup and the nonlinearity f satisfies suitable properties. The approaches are based on the well-known Banach contraction principle. In addition, a sufficient criterion is established for the existence and uniqueness of (omega, Q)-periodic mild solutions to the Hopfield-type neural network model.
引用
收藏
页数:12
相关论文
共 23 条
  • [1] (ω, c)-Periodic Mild Solutions to Non-Autonomous Abstract Differential Equations
    Abadias, Luciano
    Alvarez, Edgardo
    Grau, Rogelio
    [J]. MATHEMATICS, 2021, 9 (05) : 1 - 15
  • [2] Alvarez E., 2018, ELECTRON J QUAL THEO, V16, P2018
  • [3] Alvarez E, 2022, MEDITERR J MATH, V19, DOI 10.1007/s00009-021-01964-6
  • [4] (ω,c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells
    Alvarez, Edgardo
    Castillo, Samuel
    Pinto, Manuel
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) : 305 - 319
  • [5] Alvarez E, 2019, BOUND VALUE PROBL, DOI 10.1186/s13661-019-1217-x
  • [6] [Anonymous], 2013, Abstr Appl Anal, DOI DOI 10.1155/2013/157140
  • [7] Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
  • [8] On the exponential stability and periodic solutions of delayed cellular neural networks
    Cao, JD
    Li, Q
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) : 50 - 64
  • [9] Pseudo S-asymptotically Bloch type periodic solutions to fractional integro-differential equations with Stepanov-like force terms
    Chang, Yong-Kui
    Wei, Yanyan
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [10] CELLULAR NEURAL NETWORKS - THEORY
    CHUA, LO
    YANG, L
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10): : 1257 - 1272