To Be Critical: Self-calibrated Weakly Supervised Learning for Salient Object Detection

被引:0
|
作者
Wang, Jian [1 ]
Liu, Tingwei [1 ]
Zhang, Miao [1 ,2 ]
Piao, Yongri [1 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
[2] Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI | 2024年 / 14435卷
基金
中国国家自然科学基金;
关键词
Salient object detection; Weakly supervised learning; Deep learning;
D O I
10.1007/978-981-99-8552-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations. Despite of the success of previous works, explorations on an effective training strategy for the saliency network and accurate matches between image-level annotations and salient objects are still inadequate. In this work, 1) we propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions, liberating the saliency network from error-prone propagation caused by pseudo labels. 2) we prove that even a much smaller dataset (merely 1.8% of ImageNet) with well-matched annotations can facilitate models to achieve better performance as well as generalizability. This sheds new light on the development of WSOD and encourages more contributions to the community. Comprehensive experiments demonstrate that our method outperforms all the existing WSOD methods by adopting the self-calibrated strategy only. Steady improvements are further achieved by training on the proposed dataset. Additionally, our method achieves 94.7% of the performance of fully-supervised methods on average. And what is more, the fully supervised models adopting our predicted results as "ground truths" achieve successful results (95.6% for BASNet and 97.3% for ITSD on F-measure), while costing only 0.32% of labeling time for pixel-level annotation. The code and dataset are available at https://github.com/DUTyimmy/SCW.
引用
收藏
页码:184 / 198
页数:15
相关论文
共 50 条
  • [31] PCL: Proposal Cluster Learning for Weakly Supervised Object Detection
    Tang, Peng
    Wang, Xinggang
    Bai, Song
    Shen, Wei
    Bai, Xiang
    Liu, Wenyu
    Yuille, Alan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) : 176 - 191
  • [32] Self-Improved Learning for Salient Object Detection
    Li, Songyuan
    Zeng, Hao
    Wang, Huanyu
    Li, Xi
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [33] A Simple Mixed-Supervised Learning Method for Salient Object Detection
    Gong, Congjin
    Yang, Gang
    Dong, Haoyu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 63 - 74
  • [34] Residual Learning for Salient Object Detection
    Feng, Mengyang
    Lu, Huchuan
    Yu, Yizhou
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4696 - 4708
  • [35] Mutual Information Regularization for Weakly-Supervised RGB-D Salient Object Detection
    Li, Aixuan
    Mao, Yuxin
    Zhang, Jing
    Dai, Yuchao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (01) : 397 - 410
  • [36] A Visual Representation-Guided Framework With Global Affinity for Weakly Supervised Salient Object Detection
    Xu, Binwei
    Liang, Haoran
    Gong, Weihua
    Liang, Ronghua
    Chen, Peng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (01) : 248 - 259
  • [37] Scribble-based complementary graph reasoning network for weakly supervised salient object detection
    Liang, Shuang
    Yan, Zhiqi
    Xie, Chi
    Zhu, Hongming
    Wang, Jiewen
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 243
  • [38] Synthetic Data Supervised Salient Object Detection
    Wu, Zhenyu
    Wang, Lin
    Wang, Wei
    Shi, Tengfei
    Chen, Chenglizhao
    Hao, Aimin
    Li, Shuo
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5557 - 5565
  • [39] Negative Prototypes Guided Contrastive Learning for Weakly Supervised Object Detection
    Zhang, Yu
    Zhu, Chuang
    Yang, Guoqing
    Chen, Siqi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II, 2023, 14170 : 36 - 51
  • [40] Deep Learning for Weakly-Supervised Object Detection and Localization: A Survey
    Shao, Feifei
    Chen, Long
    Shao, Jian
    Ji, Wei
    Xiao, Shaoning
    Ye, Lu
    Zhuang, Yueting
    Xiao, Jun
    NEUROCOMPUTING, 2022, 496 : 192 - 207