Best proximity points for proximal Gornicki mappings and applications to variational inequality problems

被引:0
作者
Dhivya, P. [1 ]
Diwakaran, D. [1 ]
Selvapriya, P. [1 ]
机构
[1] Vellore Inst Technol, Dept Math, Chennai 600127, India
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
关键词
fixed points; best proximity points; Gornicki mapping; enriched contraction; partial metric space; variational inequality; METRIC-SPACES; FIXED-POINTS; THEOREMS; CONTRACTIONS; CONVERGENCE; EXTENSIONS; EXISTENCE;
D O I
10.3934/math.2024287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a large class of mappings called proximal Gornicki mappings in metric spaces, which includes Gornicki mappings, enriched Kannan mappings, enriched Chatterjea mappings, and enriched mappings. We prove the existence of the best proximity points in metric spaces and partial metric spaces. Moreover, we utilize appropriate examples to illustrate our results, and we verify the convergence behavior. As an application of our result, we prove the existence and uniqueness of a solution for the variational inequality problems. The obtained results generalize the existing results in the literature.
引用
收藏
页码:5886 / 5904
页数:19
相关论文
共 50 条
  • [41] Coincidence Best Proximity Points for Generalized MT-Proximal Cyclic Contractive Mappings in S-Metric Space
    Khanpanuk, Tiwabhorn
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (04): : 1787 - 1799
  • [42] A SIMULATION FUNCTION APPROACH FOR BEST PROXIMITY POINT AND VARIATIONAL INEQUALITY PROBLEMS
    Abbas, M.
    Suleiman, Y. I.
    Vetro, C.
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 3 - 16
  • [43] A variational principle and best proximity points
    Ivanov, Milen
    Zlatanov, Boyan
    Zlateva, Nadia
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (08) : 1315 - 1326
  • [44] The existence of best proximity points for multivalued non-self-mappings
    Abkar, A.
    Gabeleh, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (02) : 319 - 325
  • [45] Best Proximity Point Results for Fuzzy Proximal Quasi Contractions with Applications
    Ali, Muzammil
    Ali, Basit
    MATHEMATICS, 2024, 12 (14)
  • [46] On optimal fuzzy best proximity coincidence points of fuzzy order preserving proximal Ψ(σ, α)-lower-bounding asymptotically contractive mappings in non-Archimedean fuzzy metric spaces
    De la Sen, Manuel
    Abbas, Mujahid
    Saleem, Naeem
    SPRINGERPLUS, 2016, 5
  • [47] Best proximity points for generalized proximal C-contraction mappings in metric spaces with partial orders
    Mongkolkeha, Chirasak
    Cho, Yeol Je
    Kumam, Poom
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [48] Best Proximity Coincidence Point Results for (α, D)-Proximal Generalized Geraghty Mappings in JS']JS-Metric Spaces
    Wiriyapongsanon, Atit
    Charoensawan, Phakdi
    Chaobankoh, Tanadon
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [49] Best proximity points for (?-?)-weak contractions and some applications
    Fallahi, Kamal
    Rad, Ghasem Soleimani
    Fulga, Andreea
    FILOMAT, 2023, 37 (06) : 1835 - 1842
  • [50] Best proximity point results for modified α-proximal C-contraction mappings
    Kumam, Poom
    Salimi, Peyman
    Vetro, Calogero
    FIXED POINT THEORY AND APPLICATIONS, 2014,