Manufacturing 3D Biomimetic Tissue: A Strategy Involving the Integration of Electrospun Nanofibers with a 3D-Printed Framework for Enhanced Tissue Regeneration

被引:7
|
作者
Randhawa, Aayushi [1 ,2 ]
Dutta, Sayan Deb [1 ,3 ]
Ganguly, Keya [1 ]
Patil, Tejal V. [1 ,2 ]
Lim, Ki-Taek [1 ,2 ,3 ]
机构
[1] Kangwon Natl Univ, Dept Biosyst Engn, Chunchon 24341, South Korea
[2] Kangwon Natl Univ, Interdisciplinary Program Smart Agr, Chunchon 24341, South Korea
[3] Kangwon Natl Univ, Inst Forest Sci, Chunchon 24341, Gangwon Do, South Korea
基金
新加坡国家研究基金会;
关键词
3D printing; biomimetic structures; combined technique; electrospinning; tissue engineering; ELECTROHYDRODYNAMIC ENHANCEMENT; FUNCTIONAL MATERIALS; HIGH-RESOLUTION; POLYMER MELTS; IN-VITRO; SCAFFOLD; FABRICATION; FIBERS; CELLS; STEREOLITHOGRAPHY;
D O I
10.1002/smll.202309269
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D printing and electrospinning are versatile techniques employed to produce 3D structures, such as scaffolds and ultrathin fibers, facilitating the creation of a cellular microenvironment in vitro. These two approaches operate on distinct working principles and utilize different polymeric materials to generate the desired structure. This review provides an extensive overview of these techniques and their potential roles in biomedical applications. Despite their potential role in fabricating complex structures, each technique has its own limitations. Electrospun fibers may have ambiguous geometry, while 3D-printed constructs may exhibit poor resolution with limited mechanical complexity. Consequently, the integration of electrospinning and 3D-printing methods may be explored to maximize the benefits and overcome the individual limitations of these techniques. This review highlights recent advancements in combined techniques for generating structures with controlled porosities on the micro-nano scale, leading to improved mechanical structural integrity. Collectively, these techniques also allow the fabrication of nature-inspired structures, contributing to a paradigm shift in research and technology. Finally, the review concludes by examining the advantages, disadvantages, and future outlooks of existing technologies in addressing challenges and exploring potential opportunities. In tissue engineering, biomimetic structure refers to the emulation of natural architecture. Methods like 3D printing and electrospinning enable the fabrication of structures resembling the native structure. These biomimetic structures confer different physical, chemical, and biological signals to the cells that aid various cellular processes such as proliferation and differentiation which help the damaged tissue to heal and regenerate. image
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex
    Lee, Soojin
    Lee, Hyun Su
    Chung, Justin J.
    Kim, Soo Hyun
    Park, Jong Woong
    Lee, Kangwon
    Jung, Youngmee
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (06) : 1 - 22
  • [32] Development of 3D-Printed, Biodegradable, Conductive PGSA Composites for Nerve Tissue Regeneration
    Huang, Wei-Jia
    Wang, Jane
    MACROMOLECULAR BIOSCIENCE, 2023, 23 (03)
  • [33] Highly porous electrospun 3D polycaprolactone/β-TCP biocomposites for tissue regeneration
    Kim, Min Seong
    Kim, Geun Hyung
    MATERIALS LETTERS, 2014, 120 : 246 - 250
  • [34] Craniomaxillofacial Tissue Regeneration using 3D-printed Poly(propylene fumarate) Tissue Engineered Bone Grafts
    Luo
    Wade, M. E.
    Walker, J.
    Larsen, M.
    Montelone, S.
    Swan, B.
    Martin, K.
    Skoracki, R.
    Larsen, P.
    Emam, H.
    Kleinfehn, A.
    Luo, Y.
    Xu, Y.
    Miller, M.
    Valerio, I.
    Becker, M.
    Dean, D.
    TISSUE ENGINEERING PART A, 2017, 23 : S97 - S97
  • [35] 3D-Printed Biomimetic Structural Colors
    Bi, Ran
    Li, Xiaohong
    Ou, Xingcheng
    Huang, Jiaqi
    Huang, Dantong
    Chen, Guoliang
    Sheng, Yu
    Hong, Wei
    Wang, Yan
    Hu, Weijie
    Guo, Shuang-Zhuang
    SMALL, 2024, 20 (05)
  • [36] Regeneration of cartilage tissue and chondrogenesis in 3D microenvironment by supramolecular glycopeptide nanofibers
    Arslan, Elif
    Sardan, Melis
    Tekinay, Ayse B.
    Guler, Mustafa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [37] Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel
    Dong Nyoung Heo
    Castro, Nathan J.
    Lee, Se-Jun
    Noh, Hanaul
    Zhu, Wei
    Zhang, Lijie Grace
    NANOSCALE, 2017, 9 (16) : 5055 - 5062
  • [38] In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration
    Boga, Joao C.
    Miguel, Sonia P.
    de Melo-Diogo, Duarte
    Mendonca, Antonio G.
    Louro, Ricardo O.
    Correia, Ilidio J.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 165 : 207 - 218
  • [39] 3D printed structures for delivery of biomolecules and cells: tissue repair and regeneration
    Park, Ju Young
    Gao, Ge
    Jang, Jinah
    Cho, Dong-Woo
    JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (47) : 7521 - 7539
  • [40] 3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration
    Correia, Tiago R.
    Figueira, Daniela R.
    de Sa, Kevin D.
    Miguel, Sonia P.
    Fradique, Ricardo G.
    Mendonca, Antonio G.
    Correia, Ilidio J.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 93 : 1432 - 1445